首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel bioactive peptides from camel milk protein hydrolysates (CMPH) were identified and tested for inhibition of cholesterol esterase (CEase), and their possible binding mechanisms were elucidated by molecular docking. Papain-generated CMPH showed the highest degree of hydrolysis. All CMPH produced upon enzymatic degradation demonstrated a dramatic enhancement of CEase inhibition compared with intact camel milk proteins, with papain-generated hydrolysate P9 displaying the highest inhibition. Peptide identification and their modeling through PepSite 2 revealed that among 20 potential bioactive peptides in alcalase-generated hydrolysate A9, only 3 peptides, with sequences KFQWGY, SQDWSFY, and YWYPPQ, showed the highest binding toward CEase catalytic sites. Among 43 peptides in 9-h papain-generated hydrolysate P9, 4 peptides were found to be potent CEase inhibitors. Molecular docking revealed that WPMLQPKVM, CLSPLQMR, MYQQWKFL, and CLSPLQFR from P9 hydrolysates were able to bind to the active site of CEase with good docking scores and molecular mechanics–generalized born surface area binding energies. Overall, this is the first study reporting CEase inhibitory potential of peptides generated from milk proteins.  相似文献   

2.
The antioxidant and the lipase and the angiotensin-converting enzyme (ACE) inhibitory properties of camel lactoferrin and its hydrolysates elaborated with four proteolytic enzymes (trypsin, α-chymotrypsin, pancreatin and papain) were assessed. Lactoferrin was purified from camel colostrum using cation exchange chromatography. Camel lactoferrin hydrolysates showed different degrees of hydrolysis, reverse phase-HPLC profiles and molecular weight distributions, reflecting heterogeneity in terms of polarity and molecular weight of the generated peptides. Camel lactoferrin hydrolysates exhibited higher antioxidant, lipase and ACE inhibitory activities than native lactoferrin. Pancreatin-generated hydrolysates showed the highest lipase inhibitory activity (48.1%), while papain-generated hydrolysates presented the greatest ACE inhibitory activity (89.14%).  相似文献   

3.
This work investigated the antioxidant activities of dromedary colostrum proteins before and after hydrolysis by pepsin, trypsin, α‐chymotrypsin, pancreatin and papain. The enzymatic hydrolysis affected the degrees of hydrolysis, electrophoretic profiles, molecular weight distribution and hydrophobic/hydrophilic properties of the generated peptides. The antioxidant activities were evaluated using four antioxidant assays, including 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) radical‐scavenging activities, ferric reducing power and ferrous ion chelating activity. Interestingly, the antioxidant activities of dromedary colostrum proteins were enhanced after enzymatic hydrolysis. The highest antioxidant potential was obtained by pancreatic hydrolysates (P ≤ 0.05). These results suggest that dromedary colostrum protein hydrolysates are an important source of natural antioxidant peptides.  相似文献   

4.
《Journal of dairy science》2022,105(3):1878-1888
Bioactive peptides derived from milk proteins are widely known to possess antibacterial activities. Even though the antibacterial effects of milk-derived peptides are widely characterized, not much focus is given to their antifungal characterization. Therefore, in this study, we investigated the antifungal properties of camel and cow whey and casein hydrolysates against various species of pathogenic Candida. The hydrolysates were produced using 2 enzymes (alcalase and protease) at differing hydrolysis durations (2, 4, and 6 h) and tested for their antifungal properties. The results showed that intact cow whey and casein proteins did not display any anti-Candida albicans properties, whereas the alcalase-derived 2 h camel casein hydrolysate (CA-C-A2) displayed a higher percentage of inhibition against Candida albicans (93.69 ± 0.26%) followed by the cow casein hydrolysate generated by protease-6 h (Co-C-P6; 81.66 ± 0.99%), which were significantly higher than that of fluconazole, a conventional antifungal agent (76.92 ± 4.72%). Interestingly, when tested again Candida krusei, camel casein alcalase 2 and 4 h (CA-C-A2 and CA-C-A4), and cow whey alcalase-6 h (CO-W-A6) hydrolysates showed higher antifungal potency than fluconazole. However, for Candida parapsilosis only camel casein alcalase-4 h (Ca-C-A4) and cow casein protease-6 h (Co-C-P6) hydrolysates were able to inhibit the growth of C. parapsilosis by 19.31 ± 0.84% and 23.82 ± 4.14%, respectively, which was lower than that shown by fluconazole (29.86 ± 1.11%). Overall, hydrolysis of milk proteins from both cow and camel enhanced their antifungal properties. Camel milk protein hydrolysates were more potent in inhibiting pathogenic Candida species as compared with cow milk protein hydrolysates. This is the first study that highlights the antifungal properties of camel milk protein hydrolysates.  相似文献   

5.
This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.  相似文献   

6.
This report describes an investigation of camel whey protein hydrolysates (CWPH) produced by gastric and pancreatic enzymes for their in vitro antidiabetic, anticancer, and anti-inflammatory properties. Degree of hydrolysis (DH) ranged from 8.54 to 47.53%, with hydrolysates generated using chymotrypsin for 6 h displaying the highest DH. Reverse phase-HPLC analysis showed that α-lactalbumin underwent complete degradation, with no intact α-lactalbumin detected in CWPH. The CWPH displayed enhanced antidiabetic activity compared with intact whey proteins; with pepsin- and chymotrypsin-generated CWPH displaying greater inhibition of dipeptidyl peptidase IV (DPP-IV), α-glucosidase, and α-amylase compared with trypsin-generated CWPH. The highest antiproliferative effect was observed for CWPH generated by chymotrypsin for 3 h, with only 4.5 to 6.5% viable liver cancer cells (HepG2) remaining when tested at concentrations from 400 to 1,000 µg/mL. The highest anti-inflammatory activity was manifested by CWPH generated by pepsin at 6-h hydrolysis. We report enhanced antiproliferative, antidiabetic, and anti-inflammatory activities upon hydrolysis of camel whey proteins, indicating their potential utilization as bioactive and functional ingredients.  相似文献   

7.
条斑紫菜活性肽的抗氧化作用   总被引:3,自引:0,他引:3  
以条斑紫菜为原料,使用木瓜蛋白酶、胰蛋白酶、胃蛋白酶水解紫菜蛋白制备活性肽,采用还原能力、清除羟自由基和二苯代苦味酰基自由基作为抗氧化性评价指标,研究紫菜活性肽的体外抗氧化活性,并测定其分子质量分布。结果表明:3种蛋白酶对紫菜蛋白具有较好的酶解效果,酶解产物具有一定的还原能力;自由基清除率和底物浓度之间具有正相关关系,木瓜蛋白酶酶解活性肽清除羟自由基活性最强,半数清除率质量浓度为0.397mg/mL;胃蛋白酶酶解活性肽清除二苯代苦味酰基自由基活性最强,半数清除率质量浓度为0.261mg/mL;经测定,具有抗氧化活性的小分子肽分子质量分布在148~1963u之间。  相似文献   

8.
《Journal of dairy science》2023,106(5):3098-3108
Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.  相似文献   

9.
鳄鱼皮酶解产物功能特性及抗氧化活性   总被引:1,自引:1,他引:0  
为了解鳄鱼皮酶解产物功能特性和抗氧化活性,采用2种商业蛋白酶(木瓜蛋白酶、碱性蛋白酶)在各自最适反应条件下分别酶解鳄鱼皮,研究水解度(DH)、酶种类及pH值对酶解产物功能特性及抗氧化活性的影响.结果显示:随着酶解时间延长,鳄鱼皮水解度逐渐增加,鳄鱼皮在碱性蛋白酶酶解作用下水解度较高,水解4h时可达12%;木瓜蛋白酶酶解产物与碱性蛋白酶酶解产物的溶解性差异不显著(P>0.05).相同水解度下,碱性蛋白酶酶解产物的热稳定性在pH4时优于木瓜蛋白酶酶解产物.酶解时间在1h之内,木瓜蛋白酶酶解物亚铁离子螯合力明显增强;随着时间延长,酶解产物亚铁离子螯合能力变化不显著(P>0.05).酶解3h后碱性蛋白酶酶解产物亚铁离子螯合能力高于木瓜蛋白酶酶解产物,但木瓜蛋白酶酶解产物具有较强的清除DPPH自由基能力.综上表明,碱性蛋白酶水解作用的鳄鱼皮水解度较高,其酶解产物乳化活性和热稳定性优于木瓜蛋白酶酶解产物;鳄鱼皮酶解产物抗氧化能力较强,有较高的开发利用价值.  相似文献   

10.
Many useful properties are assigned to camel (Camelus dromedarius) milk, which is traditionally used for the treatment of tuberculosis, gastroenteritis, and allergy in many countries. Some amino acid sequences, which are encrypted in the camel proteins, may play a beneficial role in human health once they are released from milk either in vivo during normal digestion or by proteolysis with purified enzymes or during bacterial fermentation. Similar to the bovine milk counterparts, camel milk bioactive peptides may display a variety of potential activities that were almost always unveiled from in vitro analyses: anti-microbial, anti-oxidative, anti-hypertensive, anti-inflammatory, and immunomodulatory activities. Today, there is a growing interest for bioactive peptides generated from camel milk. This paper reviews available data on the potential biological activities of the camel milk proteins and their peptides liberated either during milk fermentation with proteolytic bacterial strains or by enzyme hydrolysis with specific proteases or simulated gastro-intestinal digestion.  相似文献   

11.
A protein isolate was produced from cellulase-treated defatted flaxseed meal followed by hydrolysis with seven proteases and evaluation of the hydrolysates for antioxidant and anti-inflammatory properties. The flaxseed protein hydrolysates (FPH) were processed by ultrafiltration and ion-exchange chromatography to isolate low molecular weight (LMW) and cationic peptide fractions, respectively. The peptides showed antioxidant properties in scavenging 2,2-diphenyl-1-picrylhydrazyl radical, superoxide anion radical, electron-spin resonance-detected hydroxyl radical and nitric oxide. In addition, all peptide fractions inhibited semicarbazide-sensitive amine oxidase activity. Antioxidant activities of these peptides were dependent on the specificity of proteases and size of the resulting peptides. The LMW fractions from pepsin, ficin and papain FPH also inhibited lipopolysaccharide-induced nitric oxide productions in RAW 264.7 macrophages without apparent cytotoxicity; thus, these peptides may act as anti-inflammatory agents. Thus, flaxseed protein hydrolysates may serve as potential ingredients for the formulation of therapeutic products.  相似文献   

12.
BACKGROUND: Bioactive peptides might be released from precursor proteins through enzymatic hydrolysis. These molecules could be potentially employed in health and food products. In this investigation, ovine milk caseinate hydrolysates obtained with a novel microbial protease derived from Bacillus sp. P7 were evaluated for antioxidant, antimicrobial, and angiotensin I‐converting enzyme (ACE)‐inhibitory activities. RESULTS: Antioxidant activity measured by the 2,2′‐azino‐bis‐(3‐ethylbenzothiazoline)‐6‐sulfonic acid method increased with hydrolysis time up to 2 h, remaining stable for up to 4 h. Hydrolysates showed low 2,2‐diphenyl‐1‐picrylhydrazyl radical‐scavenging abilities, with higher activity (31%) reached after 1 h of hydrolysis. Fe2+‐chelating ability was maximum for 0.5 h hydrolysates (83.3%), decreasing thereafter; and the higher reducing power was observed after 1 h of hydrolysis. ACE‐inhibitory activity was observed to increase up to 2 h of hydrolysis (94% of inhibition), declining afterwards. 3 h hydrolysates were shown to inhibit the growth of Bacillus cereus, Corynebacterium fimi, Aspergillus fumigatus, and Penicillium expansum. CONCLUSION: Ovine caseinate hydrolyzed with Bacillus sp. P7 protease presented antioxidant, antihypertensive, and antimicrobial activities. Hydrolysis time was observed to affect the evaluated bioactivities. Such hydrolysates might have potential applications in the food industry. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
郝晓丽  张霞  李磊  何静  吉日木图 《食品工业科技》2020,41(13):187-194,201
为了研究不同蛋白水解酶对驼乳和牛乳抗氧化能力的影响,向驼乳和牛乳乳清蛋白中添加不同蛋白水解酶,探究乳清蛋白抗氧化活性肽的最佳制备条件,并对其抗氧化能力进行比较分析。首先从3种蛋白酶中筛选出最佳用酶,在此基础上以1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-Trinitrophenylhydrazine,DPPH)自由基的清除率为响应值,进行单因素和响应面试验,同时研究了驼乳和牛乳乳清蛋白抗氧化肽对DPPH自由基、羟自由基、超氧阴离子的清除效果。结果表明,木瓜蛋白酶水解物的能力最强,水解度可达15%。驼乳乳清蛋白最佳酶解工艺为酶解pH6.4,酶解温度55 ℃,底物浓度2.73%,DPPH自由基清除率可达71.9%。牛乳乳清蛋白最佳酶解工艺为酶解pH6,酶解温度54 ℃,底物浓度4%,DPPH自由基清除率达69.9%。在最佳酶解条件下,驼乳乳清蛋白酶解液的·OH清除率为58.2%,O2-·清除率为67.2%;牛乳乳清蛋白酶解液·OH清除率为52.2%,·O2-清除率为60.7%。驼乳乳清蛋白酶解液的抗氧化性在不同程度上均高于牛乳乳清蛋白酶解液,驼乳和牛乳乳清酶解液的DPPH自由基清除能力较强,其次是O2-·清除能力,·OH清除能力最弱。  相似文献   

14.
This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.  相似文献   

15.
酶水解是降低食物过敏原致敏性的一种常用手段,本文分别利用胃蛋白酶、木瓜蛋白酶、中性蛋白酶和碱性蛋白酶水解鸡蛋清蛋白,通过三羟甲基氨基甘氨酸-十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(Tricine-SDS-PAGE),并结合水解度(邻苯二甲醛法)分析监测蛋清蛋白的酶解过程,进一步利用制备的兔抗蛋清蛋白多克隆抗体血清和鸡蛋过敏患者血清池评估酶解产物的抗原性和致敏性。结果表明:木瓜蛋白酶和碱性蛋白酶能够有效的水解蛋清蛋白,并且所得酶解产物的抗原性和致敏性较低,其中,木瓜蛋白酶水解蛋清蛋白后产物的抗原性降低了59.23%,致敏性降低了4.91%;碱性蛋白酶水解蛋清蛋白后产物的抗原性降低了57.61%,致敏性降低了4.55%。因此,木瓜蛋白酶和碱性蛋白酶对鸡蛋清蛋白降解及致敏性降低方面均有显著影响。   相似文献   

16.
Pea protein isolate (Pisum sativum “Navarro”) was hydrolyzed with 11 proteolytic enzymes at different hydrolysis times (15, 30, 60, and 120 min) to improve techno-functional and sensory properties. The degree of hydrolysis and changes within the molecular weight distribution were used as indicators for a reduced allergenic potential. The highest degree of hydrolysis was reached by Esperase hydrolysates (9.77%) after 120 min of hydrolysis, whereas Chymotrypsin hydrolysates showed the lowest (1.81%). Hydrolysis with Papain, Trypsin, Bromelain, Esperase, Savinase, and Alcalase suggested an effective degradation of the 72 kDa-convicilin fraction. Papain and Trypsin hydrolysates showed a degradation of the 50 kDa-mature vicilin after 15 min of hydrolysis. Most hydrolysates showed a significant increase in protein solubility at pH 4.5 at all times of hydrolysis. Trypsin hydrolysates showed the highest foaming (2271%) and emulsifying (719 mL/g) capacities. The bitterness of the hydrolysates was strongly correlated (P < 0.05) with the degree of hydrolysis. In general, enzymatic hydrolysis improved techno-functional properties indicating their potential usage as food ingredients.Industrial relevanceDue to their high protein content, peas are becoming an attractive ingredient for the food industry. However, pea protein isolates are often characterized by poor techno-functional and sensory properties. Enzymatic hydrolysis is known to change the molecular weight distribution of proteins. Consequently, the techno-functional and immunogenic properties might be altered selectively. In this study, enzymatic hydrolysis was applied, resulting in highly functional pea protein hydrolysates with a hypothesized reduction of main allergens. The lower bitter perception highlights their high potential as valuable functional food ingredients.  相似文献   

17.
BACKGROUND: Some dietary proteins possess biological properties which make them potential ingredients of functional or health‐promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. RESULTS: All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β‐carotene bleaching method, reducing power and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical‐scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. CONCLUSION: The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Native- and molten globule states of α-lactalbumin (α-La) from camel and bovine milk were used for comparative assessment of digestibility and antioxidant activity. The proteolysis assessments were performed in the presence of gastrointestinal enzymes, using the o-phthaldialdehyde assay, and the antioxidant activity was carried out using a 2,20-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid based method. Camel and bovine α-La revealed similar sensitivity to proteolysis by pepsin. The degree of hydrolysis (DH) of camel α-La by either trypsin or chymotrypsin was noticeably higher than that of the bovine protein counterpart. This can be explained by the different conformational and structural features of these proteins, as shown by studies of intrinsic- and 8-anilinonaphthalene-1-sulfonic acid fluorescence. The greater antioxidant activity of camel α-La could be explained by the higher content of antioxidant amino acid residues and different conformational features between bovine and camel α-La. The results may suggest that α-La produced from camel milk may be used for infant formulae as an alternative to that produced from bovine milk.  相似文献   

19.
The aim of this study was to investigate the effects of enzymatic hydrolysis with digestive enzymes of camel whole casein and beta-casein (β-CN) on their antioxidant and Angiotensin Converting Enzyme (ACE)-inhibitory properties. Peptides in each hydrolysate were fractionated with ultra-filtration membranes. The antioxidant activity was determined using a Trolox equivalent antioxidant capacity (TEAC) scale. After enzymatic hydrolysis, both antioxidant and ACE-inhibitory activities of camel whole casein and camel β-CN were enhanced. Camel whole casein and β-CN showed significant ACE-inhibitory activities after hydrolysis with pepsin alone and after pepsinolysis followed by trypsinolysis and chymotrypsinolysis. Camel β-CN showed high antioxidant activity after hydrolysis with chymotrypsin. The results of this study suggest that when camel milk is consumed and digested, the produced peptides start to act as natural antioxidants and ACE-inhibitors.  相似文献   

20.
Enzymatic hydrolysis of milk proteins has been a subject of numerous research studies and patents. The driving force for these studies has been the increased utilization of milk proteins. The industrial uses of milk proteins are based on their unique composition, functionality, and nutritive values. The diversity of milk protein fraction, the large number of proteinases, and controlled hydrolysis conditions used resulted in the preparation of hydrolysates suitable for several purposes. Enzymatic hydrolysis of milk proteins modifies the techno-functional and biofunctional properties of hydrolysates depending on the enzyme(s) and hydrolysis conditions used. Milk protein hydrolysates (MPH) are used commonly in normal and clinical nutrition and as a functional food ingredient. In the present review, emphasis has been made to highlight methods applied for the preparation of MPH, and the functional properties and utilization of the obtained hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号