首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The objective of this study was to evaluate different durations of whole raw soybean (WS) supplementation (diet rich in n-6 fatty acid) during the prepartum period on cellular immune function of dairy cows in the transition period and early lactation. Thirty-one Holstein cows were used in a completely randomized design and assigned to 4 experimental groups (G) [G90, G60, G30, and G0 (control)] supplemented with a diet containing 12% of WS from 90, 60, 30 and 0 d relative to the calving date, respectively. Cows were dried off 60 d before the expected calving date. After parturition, all cows were fed a diet containing 12% of WS until 84 DIM. Blood samples were collected before the morning feeding (d ?56 ± 2, ?28 ± 2, ?14 ± 2, ?7 ± 2, at the day of partum, 7 ± 2, 14 ± 2, 28 ± 2, and 56 ± 2 relative to parturition). Cell phenotyping and phagocytosis assays were carried out using monoclonal antibodies and flow cytometry technique. Duration of WS supplementation linearly increased the percentage of blood CD3+ cells, as well as increased the percentage of blood CD8+ cells in the postpartum period, notably in G30, whereas the lowest values were observed in G0. Further, the duration of WS supplementation linearly increased the reactive oxygen species median fluorescence intensity of CH138+ cells after phagocytizing Staphylococcus aureus in the postpartum period. Longer periods of WS supplementation linearly increased phagocytosis median fluorescence intensity of CH138+ cells in the prepartum period of cows. Duration of WS supplementation linearly increased the percentage of blood CD14+ cells producing reactive oxygen species when stimulated either by Staph. aureus or Escherichia coli in the postpartum period. In conclusion, longer periods of WS supplementation during late lactation and the dry period (beginning on d 90 of the expected calving date) alter the leukocyte population and improve neutrophil immune response in the postpartum period with no detrimental effects on cow performance.  相似文献   

2.
The objective of this study was to evaluate whether providing chitosan (CHI) to cows fed diets supplemented with whole raw soybeans (WRS) would affect the nutrient intake and digestibility, ruminal fermentation and bacterial populations, microbial protein synthesis, N utilization, blood metabolites, and milk yield and composition of dairy cows. Twenty-four multiparous Holstein cows (141 ± 37.1 d in milk, 38.8 ± 6.42 kg/d of milk yield; mean ± SD) were enrolled to a 4 × 4 Latin square design experiment with 23-d periods. Cows were blocked within Latin squares according to milk yield, days in milk, body weight, and rumen cannula (n = 8). A 2 × 2 factorial treatment arrangement was randomly assigned to cows within blocks. Treatments were composed of diets with 2 inclusion rates of WRS (0 or 14% diet dry matter) and 2 doses of CHI (0 or 4 g/kg of dry matter, Polymar Ciência e Nutrição, Fortaleza, Brazil). In general, CHI+WRS negatively affected nutrient intake and digestibility of cows, decreasing milk yield and solids production. The CHI increased ruminal pH and decreased acetate to propionate ratio, and WRS reduced NH3-N concentration and acetate to propionate in the rumen. The CHI reduced the relative bacterial population of Butyrivibrio group, whereas WRS decreased the relative bacterial population of Butyrivibrio group, and Fibrobacter succinogenes, and increased the relative bacterial population of Streptococcus bovis. No interaction effects between CHI and WRS were observed on ruminal fermentation and bacterial populations. The CHI+WRS decreased N intake, microbial N synthesis, and N secreted in milk of cows. The WRS increased N excreted in feces and consequently decreased the N excreted in urine. The CHI had no effects on blood metabolites, but WRS decreased blood concentrations of glucose and increased blood cholesterol concentration. The CHI and WRS improved efficiency of milk yield of cows in terms of fat-corrected milk, energy-corrected milk, and net energy of lactation. The CHI increased milk concentration [g/100 g of fatty acids (FA)] of 18:1 trans-11, 18:2 cis-9,cis-12, 18:3 cis-9,cis-12,cis-15, 18:1 cis-9,trans-11, total monounsaturated FA, and total polyunsaturated FA. The WRS increased total monounsaturated FA, polyunsaturated FA, and 18:0 to unsaturated FA ratio in milk of cows. Evidence indicates that supplementing diets with unsaturated fat sources along with CHI negatively affects nutrient intake and digestibility of cows, resulting in less milk production. Diet supplementation with CHI or WRS can improve feed efficiency and increases unsaturated FA concentration in milk of dairy cows.  相似文献   

3.
《Journal of dairy science》2022,105(1):201-220
The objective was to study the effects of week of lactation (WOL) and experimental nutrient restriction on concentrations of selected milk metabolites and fatty acids (FA), and assess their potential as biomarkers of energy status in early-lactation cows. To study WOL effects, 17 multiparous Holstein cows were phenotyped from calving until 7 WOL while allowed ad libitum intake of a lactation diet. Further, to study the effects of nutrient restriction, 8 of these cows received a diet containing 48% straw (high-straw) for 4 d starting at 24 ± 3 days in milk (mean ± SD), and 8 cows maintained on the lactation diet were sampled to serve as controls. Blood and milk samples were collected weekly for the WOL data set, and daily from d ?1 to 3 of nutrient restriction (or control) for the nutritional challenge data set. Milk β-hydroxybutyrate (BHB), isocitrate, glucose, glucose-6-phosphate (glucose-6P), galactose, glutamate, creatinine, uric acid, and N-acetyl-β-d-glucosaminidase activity (NAGase) were analyzed in p.m. and a.m. samples, and milk FA were analyzed in pooled p.m. and a.m. samples. Average energy balance (EB) per day ranged from ?27 MJ/d to neutral when cows received the lactation total mixed ration, and from ?109 to ?87 ± 7 MJ/d for high-straw (least squares means ± standard error of the mean). Plasma nonesterified FA concentration was 1.67 ± 0.13 mM and BHB was 2.96 ± 0.39 mM on the d 3 of high-straw (least squares means ± standard error of the mean). Milk concentrations of BHB, glucose, glucose-6P, glutamate, and uric acid differed significantly between p.m. and a.m. milkings. Milk isocitrate, glucose-6P, creatinine, and NAGase decreased, whereas milk glucose and galactose increased with WOL. Changes in milk BHB, isocitrate, glucose, glucose-6P, and creatinine were concordant during early lactation and in response to nutrient restriction. Milk galactose and NAGase were modulated by WOL only, whereas glutamate and uric acid concentrations responded to nutrient restriction only. The high-straw increased milk concentrations of FA potentially mobilized from adipose tissue (e.g., C18:0 and cis-9 C18:1 and sum of odd- and branched-chain FA (OBCFA) with carbon chain greater than 16; ∑ OBCFA >C16), and decreased concentrations of FA synthesized de novo by the mammary gland (e.g., sum of FA with 6 to 15 carbons; ∑ C6:0 to C15:0). Similar observations were made during early lactation. Plasma nonesterified FA concentrations had the best single linear regression with EB (R2 = 0.62). Milk isocitrate, Σ C6:0 to C15:0. and cis-9 C18:1 had the best single linear regressions with EB (R2 ≥ 0.44). Milk BHB, isocitrate, galactose, glutamate, and creatinine explained up to 64% of the EB variation observed in the current study using multiple linear regression. Milk concentrations of ∑ C6:0 to C15:0, C18:0, cis-9 C18:1, and ∑ OBCFA >C16 presented some of the best correlations and regressions with other indicators of metabolic status, lipomobilization, and EB, and their responses were concordant during early lactation and during experimental nutrient restriction. Metabolites and FA secreted in milk may serve as noninvasive indicators of metabolic status and EB of early-lactation cows.  相似文献   

4.
Objectives were to evaluate the effect of prepartum energy intake on performance of dairy cows supplemented with or without ruminally protected choline (RPC; 0 or 17.3 g/d of choline chloride; 0 or 60 g/d of ReaShure, Balchem Corp., New Hampton, NY). At 47 ± 6 d before the expected calving date, 93 multiparous Holstein cows were assigned randomly to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement. Cows were fed energy to excess [EXE; 1.63 Mcal of net energy for lactation/kg of dry matter (DM)] or to maintenance (MNE; 1.40 Mcal of net energy for lactation/kg of DM) in ad libitum amounts throughout the nonlactating period. The RPC was top-dressed for 17 ± 4.6 d prepartum through 21 d postpartum (PP). After calving, cows were fed the same methionine-balanced diet, apart from RPC supplementation, through 15 wk PP. Liver was biopsied at ?14, 7, 14, and 21 d relative to parturition. Cows fed EXE or MNE diets, respectively, consumed 40 or 10% more Mcal/d than required at 15 d before parturition. Cows fed the MNE compared with the EXE diet prepartum consumed 1.2 kg/d more DM postpartum but did not produce more milk (41.6 vs. 43.1 kg/d). Thus, PP cows fed the EXE diet prepartum were in greater mean negative energy balance, tended to have greater mean concentrations of circulating insulin, fatty acids, and β-hydroxybutyrate, and had greater triacylglycerol in liver tissue (8.3 vs. 10.7% of DM) compared with cows fed the MNE diet prepartum. Cows fed RPC in transition tended to produce more milk (43.5 vs. 41.3 kg/d) and energy-corrected milk (44.2 vs. 42.0 kg/d) without increasing DM intake (23.8 vs. 23.2 kg/d) during the first 15 wk PP, and tended to produce more milk over the first 40 wk PP (37.1 vs. 35.0 kg/d). Energy balance of cows fed RPC was more negative at wk 2, 3, and 6 PP, but mean circulating concentrations of fatty acids and β-hydroxybutyrate did not differ from those of cows not fed RPC. Despite differences in energy balance at 2 and 3 wk PP, mean concentration of hepatic triacylglycerol did not differ between RPC treatments. Feeding RPC reduced the daily prevalence of subclinical hypocalcemia from 25.5 to 10.5%, as defined by concentrations of total Ca of <8.0 mg/dL in serum in the first 7 d PP. Pregnancy at first artificial insemination tended to be greater for cows fed RPC (41.3 vs. 23.6%), but the proportion of pregnant cows did not differ by 40 wk PP. Heifers born from singleton calvings from cows fed RPC tended to experience greater daily gain between birth and 50 wk of age than heifers from cows not supplemented with RPC. Feeding RPC for approximately 38 d during the transition period tended to increase yield of milk for 40 wk regardless of amount of energy consumed during the pregnant, nonlactating period.  相似文献   

5.
《Journal of dairy science》2022,105(7):5761-5775
Our objective was to investigate the effects of prepartum metabolizable protein (MP) supply and management strategy on milk production and blood biomarkers in early lactation dairy cows. Ninety-six multigravida Holstein cows were used in a randomized complete block design study, blocked by calving date, and then assigned randomly to 1 of 3 treatments within block. Cows on the first treatment were fed a far-off lower MP diet [MP = 83 g/kg of dry matter (DM)] between ?55 and ?22 d before expected calving and then a close-up lower MP diet (MP = 83 g/kg of DM) until parturition (LPLP). Cows on the second treatment were fed the far-off lower MP diet between ?55 to ?22 d before expected parturition and then a prepartum higher MP diet (MP = 107 g/kg of DM) until calving (LPHP). Cows on the third treatment had a shortened 43-d dry period and were fed the prepartum higher MP diet from dry-off to parturition (SDHP). After calving, cows received the same fresh diet from d 0 to 14 and the same high diet from d 15 to 84. Data were analyzed separately for wk ?6 to ?1 and wk 1 to 12, relative to parturition. Dry matter intake from wk ?6 to ?1 was not different between LPHP and LPLP and increased for SDHP compared with LPLP. In contrast, dry matter intake for wk 1 to 12 postpartum did not change for LPHP versus LPLP or for SDHP versus LPLP. Compared with LPLP cows, LPHP cows had lower energy-corrected milk yield and tended to have decreased milk fat yield during wk 1 to 12 of lactation. Conversely, yields of energy-corrected milk and milk fat and protein were similar for SDHP compared with LPLP. Plasma urea N during wk ?3 to ?1 increased for LPHP versus LPLP and for SDHP versus LPLP; however, no differences in plasma urea N were observed postpartum. Elevated prepartum MP supply did not modify circulating total fatty acids, β-hydroxybutyrate, total protein, albumin, or aspartate aminotransferase during the prepartum and postpartum periods. Increased MP supply prepartum combined with a shorter dry period (SDHP vs. LPLP) tended to increase whole-blood β-hydroxybutyrate postpartum; however, other blood metabolites were not affected. Taken together, under the conditions of this study, elevated MP supply in close-up diets reduced milk production without affecting blood metabolites in multiparous dairy cows during early lactation. A combination of a shorter dry period and increased prepartum MP supply (i.e., SDHP vs. LPLP) improved prepartum dry matter intake without modifying energy-corrected milk yield and blood biomarkers in early lactation cows.  相似文献   

6.
Ruminants have a unique metabolism and digestion of unsaturated fatty acids (UFA). Unlike monogastric animals, the fatty acid (FA) profile ingested by ruminants is not the same as that reaching the small intestine. The objective of this study was to evaluate whole raw soybeans (WS) in diets as a replacer for calcium salts of fatty acids (CSFA) in terms of UFA profile in the abomasal digesta of early- to mid-lactation cows. Eight Holstein cows (80 ± 20 d in milk, 22.9 ± 0.69 kg/d of milk yield, and 580 ± 20 kg of body weight; mean ± standard deviation) with ruminal and abomasal cannulas were used in a 4 × 4 Latin square experiment with 22-d periods. The experiment evaluated different fat sources rich in linoleic acid on ruminal kinetics, ruminal fermentation, FA abomasal flow, and milk FA profile of cows assigned to treatment sequences containing a control (CON), with no fat source; soybean oil, added at 2.68% of diet dry matter (DM); WS, addition of WS at 14.3% of diet DM; and CSFA, addition of CSFA at 2.68% of diet DM. Dietary fat supplementation had no effect on nutrient intake and digestibility, with the exception of ether extract. Cows fed fat sources tended to have lower milk fat concentration than those fed CON. In general, diets containing fat sources tended to decrease ruminal neutral detergent fiber digestibility in relation to CON. Cows fed WS had lower ruminal digestibility of DM and higher abomasal flow of DM in comparison to cows fed CSFA. As expected, diets containing fat supplements increased FA abomasal flow of C18:0 and total FA. Cows fed WS tended to present a higher concentration of UFA in milk when compared with those fed CSFA. This study suggests that under some circumstances, abomasal flow of UFA in early lactation cows can be increased by supplementing their diet with fat supplements rich in linoleic acid, regardless of rumen protection, with small effects on ruminal DM digestibility.  相似文献   

7.
A field study using seven Holstein herds was conducted to determine effects of prepartum milking on milk production, health disorders, and reproductive performance. In each herd, 80 cows (30% first lactation cows) were assigned 1 mo prior to expected calving date to one of two treatments: postpartum or prepartum milking. The group milked prepartum was machine-milked twice daily at regular milking intervals beginning 14 d prior to date of expected calving. The group milked postpartum was milked for the first time after calving. The day prior to calving, 36, 33, and 31% of the cows milked prepartum produced less than 4.5 kg, 4.5 to 9 kg, and greater than 9 kg of milk, respectively. No relationship existed between days milked prepartum and prepartum milk yield. Lactation milk yield and persistency were not affected by prepartum milking. Prepartum milking reduced incidence of milk fever and mastitis during the 1st mo after parturition. Treatment was not a significant source of variation for reproductive performance or body condition; however, culling was higher for cows milked postpartum. Results indicate no adverse effects on cow performance due to prepartum milking nor increase in lactation milk yield.  相似文献   

8.
The objectives of this experiment were to determine whether low doses of bovine somatotropin (bST) during the transition period and early lactation period improved dry matter intake (DMI), body weight (BW), or body condition score (BCS); provoked positive changes in concentrations of somatotropin, insulin, insulin-like growth factor-I (IGF-I), glucose, nonesterified fatty acids, and Ca; or improved milk yield (MY) response without obvious adverse effects on health status. Eighty-four multiparous Holstein cows completed treatments arranged in a 2 x 3 x 2 factorial design that included prepartum and postpartum bST, dry period (30 d dry, 30 d dry + estradiol cypionate, and 60 d dry), and prepartum anionic or cationic diets. Biweekly injections of bST began at 21 +/- 3 d before expected calving date through 42 +/- 2 d postpartum (control = 0 vs. bST = 10.2 mg of bST/d; POSILAC). At 56 +/- 2 d in milk, all cows were injected with a full dose of bST (500 mg of bST/14 d; POSILAC). During the prepartum period and during the first 28 d postpartum, no differences in mean BW, BCS, or DMI were detected between the bST treatment group and the control group. During the first 10 wk of lactation, cows in the bST treatment group had greater mean MY and 3.5% fat-corrected milk yield and lower SCC than did cows in the control group. When cows received a full dose of bST, an increase in milk production through wk 21 was maintained better by cows in the bST group. Mean concentrations of somatotropin, IGF-I, and insulin differed during the overall prepartum period (d -21 to -1). During the postpartum period (d 1 to 28), cows in the bST group had greater mean concentrations of somatotropin and IGF-I in plasma. Concentrations of Ca around calving did not differ because of bST treatment. Results suggest that changes in concentrations of blood measures provoked by injections of bST during the transition period and early lactation period resulted in improved metabolic status and production of the cows without apparent positive or negative effects on calving or health.  相似文献   

9.
The objectives were to evaluate the effects of feeding diets with 2 levels of negative dietary cation-anion differences (DCAD) during the last 42 or 21 d of gestation on performance and metabolism in dairy cows. The hypothesis was that extending feeding from 21 to 42 d and reducing the DCAD from ?70 to ?180 mEq/kg of dry matter (DM) would not be detrimental to performance. Holstein cows at 230 d of gestation were blocked by parity prepartum (48 entering their second lactation and 66 entering their third or greater lactation) and 305-d milk yield, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial. The 2 levels of DCAD, ?70 or ?180 mEq/kg of DM, and 2 feeding durations, the last 21 d (short) or the last 42 d (long) prepartum resulted in 4 treatments, short ?70 (n = 29), short ?180 (n = 29), long ?70 (n = 28) and long ?180 (n = 28). Cows in the short treatments were fed a diet with DCAD of +110 mEq/kg of DM from ?42 to ?22 d relative to calving. After calving, cows were fed the same diet and production and disease incidence were evaluated for 42 d in milk, whereas reproduction and survival was evaluated for 305 d in milk. Blood was sampled pre- and postpartum for quantification of metabolites and minerals. Reducing the DCAD linearly decreased prepartum DM intake between ?42 and ?22 d relative to calving (+110 mEq/kg of DM = 11.5 vs. ?70 mEq/kg of DM = 10.7 vs. ?180 mEq/kg of DM = 10.2 ± 0.4), and a more acidogenic diet in the last 21 d of the dry period reduced intake by 1.1 kg/d (?70 mEq/kg of DM = 10.8 vs. ?180 mEq/kg of DM = 9.7 ± 0.5 kg/d). Cows fed the ?180 mEq/kg of DM diet had increased concentrations of ionized Ca in blood on the day of calving (?70 mEq/kg of DM = 1.063 vs. ?180 mEq/kg of DM = 1.128 ± 0.020 mM). Extending the duration of feeding the diets with negative DCAD from 21 to 42 d reduced gestation length by 2 d (short = 277.2 vs. long = 275.3 d), milk yield by 2.5 kg/d (short = 40.4 vs. long = 37.9 ± 1.0 kg/d) and tended to increase days open because of reduced pregnancy per artificial insemination (short = 35.0 vs. long = 22.6%). Results suggest that increasing the duration of feeding diets with negative DCAD from 21 to 42 d prepartum might influence milk yield and reproduction of cows in the subsequent lactation, although yields of 3.5% fat- and energy-corrected milk did not differ with treatments. Reducing the DCAD from ?70 to ?180 mEq/kg of DM induced a more severe metabolic acidosis, increased ionized Ca concentrations prepartum and on the day of calving, and decreased colostrum yield in the first milking, but had no effects on performance in the subsequent lactation. Collectively, these data suggest that extending the feeding of an acidogenic diet beyond 21 d is unnecessary and might be detrimental to dairy cows, and a reduction in the DCAD from ?70 to ?180 mEq/kg of DM is not needed.  相似文献   

10.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on dry matter intake (DMI), milk production, apparent total-tract nutrient digestibility, and postpartum ovarian activity of dairy cows fed fresh diets varying in starch content. From d 28 ± 3 before the expected calving date until d 44 ± 3 after calving, 117 Holstein cows were fed diets with SCFP (SCFP; n = 59) or without (control, CON; n = 58). A common, basal, controlled-energy close-up diet (net energy for lactation: 1.43 Mcal/kg; 13.8% starch) was fed before calving. Cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period), resulting in 4 treatment groups: LS-CON (n = 30), LS-SCFP (n = 29), HS-CON (n = 28), and HS-SCFP (n = 30). All cows were fed the HS diets from d 24 ± 3 to 44 ± 3 after calving (post-fresh period). Cows were assigned to treatment balanced for parity, body condition score, body weight, and expected calving date. Milk yield was higher for cows fed the LS diets compared with those fed the HS diets during the fresh period (34.1 vs. 32.1 kg/d), whereas DMI and 3.5% fat-corrected milk yield (FCM) were not affected by dietary starch content, and LS cows tended to lose more body condition than HS cows (?0.42 vs. ?0.35 per 21 d) during the fresh period. Overall DMI during the close-up and fresh periods did not differ between SCFP and CON cows. However, SCFP supplementation transiently increased DMI on d 1 (13.0 vs. 11.9 kg/d) and 5 (15.5 vs. 14.1 kg/d) after calving compared with CON. During the post-fresh period, SCFP cows tended to eat less than CON cows (19.8 vs. 20.6 kg/d) but had similar 3.5% FCM (44.9 vs. 43.6 kg/d), resulting in greater feed efficiency for SCFP cows (FCM/DMI; 2.27 vs. 2.13). Neither starch content of fresh diets nor SCFP supplementation affected the interval from calving to first ovulation or the incidence of double ovulation. These findings suggest that feeding low-starch diets during the fresh period can increase milk production of dairy cows during the fresh period, and that supplementation of SCFP may increase feed intake around calving and feed efficiency in the post-fresh period.  相似文献   

11.
《Journal of dairy science》2019,102(11):9842-9856
The objective of our study was to evaluate the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on nutrient digestibility, energy partitioning, and production responses of lactating dairy cows. Cows were blocked by milk yield and assigned to 3 groups (12 cows per group) in a main plot: low (45.2 ± 1.7 kg/d), medium (53.0 ± 1.6 kg/d), and high (60.0 ± 1.9 kg/d). Within each production group, a truncated Latin square arrangement of fatty acid (FA) treatments was used in 2 consecutive 35-d periods. The FA treatments supplemented at 1.5% of diet dry matter were (1) 80:10 (80% C16:0 + 10% cis-9 C18:1), (2) 73:17 (73% C16:0 + 17% cis-9 C18:1), (3) 66:24 (66% C16:0 + 24% cis-9 C18:1), and (4) 60:30 (60% C16:0 + 30% cis-9 C18:1). Treatment × production group interactions were observed for yields of milk, fat-corrected milk, energy-corrected milk, milk fat, milk protein, and milk lactose and energy partitioned to milk. Increasing cis-9 C18:1 in FA treatments reduced fat-corrected milk, energy-corrected milk, and milk energy output in low-producing cows but increased these in high-producing cows. Increasing cis-9 C18:1 in FA treatments did not affect milk yield, milk protein yield, and milk lactose yield in low- and medium-producing cows but increased these in high-producing cows. Regardless of production level, there was no effect of treatments on dry matter intake; however, increasing cis-9 C18:1 in FA treatments increased body weight change and body condition score change. Increasing cis-9 C18:1 in FA treatments increased total FA digestibility due to a linear increase in 16- and 18-carbon FA digestibilities. Interactions between FA treatments and production level were observed for the yield of milk fat and milk FA sources. In low-producing cows, increasing cis-9 C18:1 in FA treatments decreased milk fat yield due to a decrease in de novo and mixed milk FA without changes in preformed milk FA. In contrast, in high-producing cows, increasing cis-9 C18:1 in FA treatments increased milk fat yield due to an increase in de novo and preformed milk FA. Our results indicate that high-producing dairy cows (averaging 60 kg/d) responded better to a fat supplement containing more cis-9 C18:1, whereas low-producing cows (averaging 45 kg/d) responded better to a supplement containing more C16:0.  相似文献   

12.
A double-blind field trial was conducted on a commercial dairy to study the effects of feeding a direct-fed microbial (DFM) product consisting of 2 strains of Enterococcus faecium plus Saccharomyces cerevisiae yeast on prepartum and postpartum performance of Holstein cows. Treatments consisted of the normal pre- and post-fresh TMR supplemented with the DFM (2 g/cow per d) or a placebo. Treatments started approximately 10 d prepartum and continued until about 23 d in milk (DIM). A total of 366 Holstein cows were enrolled in 1 of 2 placebo groups or 2 DFM-supplemented groups. Groups were enrolled consecutively, starting with the placebo treatment. Sample size was limited to 4 groups because the cooperating dairy prematurely terminated the study due to increased health problems in one of the groups. Blood samples were taken during the prefresh period between 2 and 10 d prior to calving and at weekly intervals from 3 to 23 DIM. Blood concentrations of nonesterified fatty acids before calving and β-hydroxy-butyrate after calving were not affected by treatment. Supplementation with the DFM product increased milk fat percentage for the first lactation cows and increased milk protein percentage for the second and greater lactation cows during the first 85 DIM. Second-lactation cows fed the DFM product received fewer antibiotic treatments before 85 DIM than cows receiving the placebo. This validated the dairy producer's concern that cows consuming one of the diets (revealed to be the placebo diet after the study was completed) were experiencing more health problems. Most measures of milk yield were numerically increased by supplementation with the DFM product. However, differences in milk yield were not significant. Key covariates for main study outcomes included milk yield in the previous (first) lactation, body condition score prior to calving, days spent in the maternity pen, and stocking density of the pre-fresh pen.  相似文献   

13.
Our objectives were to evaluate the effects of prepartum monensin supplementation and dry-period nutritional strategy on the postpartum productive performance of cows fed monensin during lactation. A total of 102 Holstein cows were enrolled in the experiment (32 primiparous and 70 multiparous). The study was a completely randomized design, with randomization restricted to balance for parity, body condition score, and expected calving date. A 2 × 2 factorial arrangement of prepartum treatments was used; the variables of interest were prepartum feeding strategy [controlled-energy diet throughout the dry period (CE) vs. controlled-energy diet from dry-off to 22 d before expected parturition, followed by a moderate-energy close-up diet from d 21 before expected parturition through parturition (CU)] and prepartum monensin supplementation [0 g/t (control, CON) or 24.2 g/t (MON); Rumensin; Elanco Animal Health, Greenfield, IN]. Lactation diets before and after the dry period contained monensin at 15.4 g/t. During the close-up period, cows fed CU had greater DM and NEL intakes than cows fed CE. Calf BW at birth tended to be greater for cows fed CU than for those fed CE but was not affected by MON supplementation. Diet did not affect calving difficulty score, but cows supplemented with MON had an increased calving difficulty score. We found a tendency for a MON × parity interaction for colostral IgG concentration, such that multiparous MON cows tended to have lower IgG concentration than CON cows, but colostral IgG concentration for primiparous MON and CON cows did not differ. Postpartum milk yield did not differ between diets but tended to be greater for cows supplemented with MON. Milk fat and lactose content were greater for cows fed CU than for those fed CE, and lactose content and yield were increased for cows supplemented with MON. Solids-corrected and fat-corrected milk yields were increased by MON supplementation, but were not affected by diet. Overall means for postpartum DMI did not differ by diet or MON supplementation. The CU diet decreased the concentration of nonesterified fatty acids during the close-up period but increased it postpartum. Neither diet nor monensin affected β-hydroxybutyrate or liver composition. Overall, postpartum productive performance differed little between prepartum dietary strategies, but cows fed MON had greater energy-corrected milk production. In herds fed monensin during lactation, monensin should also be fed during the dry period.  相似文献   

14.
Plant essential plant oils (EO) are volatile aromatic compounds with antimicrobial activity that can alter ruminal fermentation when used as dietary supplements. A feeding trial was conducted to determine the effects of dietary supplementation of periparturient and early lactation dairy cows with a specific mixture of EO. Forty multiparous Holstein cows were randomly assigned to either control (C) or EO-supplemented (1.2 g/cow per day) total mixed rations (TMR). Feeding of treatment diets commenced 3 wk before the expected calving date and continued through 15 wk in lactation. The prepartum TMR contained 70% forage [70% corn silage, 15% alfalfa silage, and 15% wheat straw; dry matter (DM) basis]. The lactation TMR contained 50% forage (60% corn silage, 33% alfalfa silage, 7% alfalfa hay; DM basis). Prepartum and lactation TMR were formulated to contain 12 and 17% CP (DM basis), respectively. There were no differences between treatments for prepartum DM intake (DMI), but DMI was 1.8 kg/d less for EO than C on average across the 15-wk lactation trial. Plasma concentrations of glucose, nonesterified fatty acids, β-hydroxybutyrate, and urea-N on samples collected −21, −14, −7, −1, 1, 8, 15, 22, and 29 d relative to calving were unaffected by treatment. There were no differences between treatments for actual or fat-corrected milk yields on average across the 15-wk lactation trial. Milk protein content was 0.15% units less for EO than C. Feed efficiency (kg of milk per kg of DMI) tended to be greater for EO than C on average and was greater during wk 8 to 14 of lactation. Prepartum and lactation body weight and condition score measurements were unaffected by treatment. There was no benefit to EO in prepartum dairy cows. Dietary supplementation with EO reduced DMI in early lactation dairy cows with no effect on milk yield.  相似文献   

15.
In feeding practice, conjugated linoleic acid (CLA) supplements are used to decrease milk fat excretion in early-lactation dairy cows to save energy to counteract the physiological negative energy balance. The present study was conducted to examine the effects of CLA on energy metabolism, changes in liver weight, and the weight of different adipose depots during early lactation. Primiparous lactating German Holstein cows (n = 25) were divided into 5 groups and each group contained 5 animals. The experiment started 21 d prepartum and continued until 105 d in milk (DIM). Cows were slaughtered at 1, 42, and 105 DIM. The experiment was divided into a prepartum period (21 d prepartum until calving), period 1 (1 until 42 DIM), and period 2 (>42 until 105 DIM). In the prepartum period, all animals were housed together and fed the same diet with no CLA supplementation. At 1 DIM, an initial group, with no CLA supplementation, was slaughtered. The 20 remaining cows were assigned to 2 diets. One group received 100 g/d of a control fat supplement (CON; n = 10) and the other group 100 g/d of a CLA supplement (CLA; n = 10) from 1 DIM until slaughter. Five cows of each feeding group were slaughtered after 42 DIM and the remaining animals after 105 DIM. The CLA supplement contained approximately 10% each of trans-10, cis-12 CLA and cis-9, trans-11 CLA. During the slaughter process the empty body weight was recorded and the omental, mesenteric, retroperitoneal, and s.c. adipose depots, as well as the liver, were dissected and weighed. The CLA treatment decreased milk fat content in period 1 (14.1%). In period 2, milk fat content (25.4%) and yield (17.1%) were lower in the CLA group. No effect of CLA on milk yield was observed. The net energy intake, milk energy output, and the calculated energy balance remained unchanged by CLA supplementation. No effect of CLA on the weights of liver, omental, mesenteric, or s.c. adipose depots was observed when related to empty body weight. Liver weight increased with DIM, whereas the retroperitoneal adipose depot weight decreased at the same time. Compared with the initial group, the retroperitoneal adipose depot weight for control animals slaughtered after 42 DIM was decreased (47.7%); however, for the CLA group slaughtered after 42 DIM, a trend to a lower retroperitoneal adipose depot weight (34.0%) was observed. This suggests a CLA-induced deceleration of mobilization of the retroperitoneal adipose depot during the first 42 DIM.  相似文献   

16.
《Journal of dairy science》2023,106(4):2989-3007
This experiment was conducted to determine the effects of feeding rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America Inc.) from −26 ± 4.6 d prepartum (0.54% RPL of dietary dry matter intake) to 28 d postpartum (0.39% RPL of dietary dry matter intake) on immunometabolic status and liver composition in dairy cows. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 4 dietary treatments in a randomized, complete block design with a 2 × 2 factorial arrangement of treatments. Treatments prepartum consisted of total mixed ration top dressed with RPL (PRE-L) or without RPL (PRE-C), and postpartum treatments consisted of total mixed ration top dressed PRE-L prepartum and postpartum, PRE-L prepartum and PRE-C postpartum, PRE-C prepartum and PRE-L postpartum, and PRE-C prepartum and postpartum in 300 g of molasses. Blood samples were taken on −7 ± 0.5, 0 ± 0.5, 7 ± 0.9, 14 ± 0.9, and 28 ± 0.5 d relative to calving. Whole blood samples were taken on −14 ± 0.5, −7 ± 0.5, 7 ± 0.9, and 14 ± 0.9 d relative to calving for oxidative burst and phagocytic capacity of monocytes and neutrophils. Liver samples were collected via a biopsy on −12 ± 4.95 and 13 ± 2.62 d relative to calving and analyzed for liver composition (triacylglyceride and carnitine concentrations), mRNA expression of hepatic genes, and protein abundance. Protein abundance was calculated by normalizing intensity bands for a specific protein with glyceraldehyde-3-phosphate dehydrogenase. Concentrations of haptoglobin and glutathione peroxidase activity in plasma were lower at d 0 for cows in PRE-L (102 µg/mL and 339 nmol/min per mL, respectively) compared with cows in PRE-C (165 µg/mL and 405 nmol/min per mL, respectively). Oxidative burst capacity in monocytes tended to be greater on d 7 postpartum for cows in PRE-L (65.6%) than cows in PRE-C (57.5%). Additionally, feeding RPL altered the mRNA expression in liver tissue prepartum [decreased INSR (insulin receptor), CPT1A (carnitine palmitoyltransferase 1A), and IL1B (interleukin 1 β)] and postpartum [increased IL8 (interleukin 8), EHMT2 (euchromatic histone lysine methyltransferase 2), TSPO (translocator protein), and SLC3A2 (solute carrier family 3 member 2); and decreased SLC7A1 (solute carrier family 7 member 1), SOD1 (superoxide dismutase 1), and SAA3 (serum amyloid A 3)] compared with cows not consuming RPL]. Additionally, cows in the PRE-C prepartum and PRE-L postpartum treatment tended to have greater protein abundance of mTOR postpartum compared with the PRE-C prepartum and postpartum treatment. Protein abundance of SLC7A7 (solute carrier family 7 member 7) pre- and postpartum tended to be greater and BBOX1 (gamma-butyrobetaine dioxygenase 1) tended to be less when RPL was consumed prepartum. In conclusion, cows that consumed RPL during the transition period had molecular changes related to liver composition, enhanced liver function indicated by greater total protein and albumin concentrations in plasma, and improved immune status indicated by decreased haptoglobin, glutathione peroxidase activity, and immune related mRNA expression.  相似文献   

17.
In high-yielding dairy cows, some fertility traits can be influenced by the fatty acid (FA) composition of the follicular fluid during early lactation. The first objective of the current study was to evaluate the potential of dietary supplements enriched in specific FA to influence the FA composition of follicular fluid lipid classes in early lactation dairy cows. The second objective was to determine the influence of the resulting follicular fluid FA composition on the folliculogenesis, lipid and energy metabolism of granulosa cells, as well as oocyte quality and embryo development. Twenty Holstein multiparous cows in late gestation were randomly assigned to 200 g/d of FA supplements enriched in (1) palmitic acid (control treatment; 82% 16:0; PA) in the rumen or (2) palmitoleic acid (sea buckthorn oil; 27% cis-9 16:1, 28% 16:0, 22% cis-9 18:1, and 11% cis-9,cis-12 18:2; SBT) in the abomasum. The treatment period ranged from 20 ± 5 d precalving to 67 ± 2 d postcalving. Cumulus-oocyte complexes, granulosa cells, and follicular fluid were recovered from 2 sequential sessions of ovum pick-up (OPU-1 and OPU-2) at 46 and 67 ± 2 d postcalving (mean ± standard deviation). On the same days, blood samples were collected. Milk performance was recorded, and feed and milk samples were collected from d 8 to 10 ± 3 (onset of lactation), d 35 to 37 ± 2 (before OPU-1), and d 63 to 65 ± 2 (before OPU-2). Treatments did not affect milk yield or fat concentration throughout the experimental trial. Compared with PA, SBT increased the cis-9 16:1 concentration in milk fat, in plasma esterified lipid classes (phospholipids, cholesterol esters, and triacylglycerols), and in follicular fluid phospholipids and cholesterol esters at OPU-1. Abundance of mRNA for stearoyl-CoA desaturase 1 and 5, and perilipin 2 in granulosa cells was not different between treatments, but an increase in the level of stearoyl-CoA desaturase 5 was observed between the 2 OPU periods. Treatments did not affect oocyte quality and developmental capacity or embryo lipid metabolism when cultivated in vitro. These results suggest that limited modifications in the FA composition of the oocyte microenvironment via dietary lipid supplements enriched in specific FA had no major effects on granulosa cell metabolism and oocyte developmental capacity in early lactation cows.  相似文献   

18.
The objective of this study was to investigate the effects of dietary energy levels and rumen-protected lysine supplementation on serum free fatty acid levels, β-hydroxybutyrate levels, dry matter (DM) intake, and milk production and composition. Treatments were arranged in a 2 × 2 factorial design with 2 dietary energy levels [high net energy for lactation (NEL) = 1.53 Mcal/kg of DM vs. low NEL = 1.37 Mcal/kg of DM; HE vs. LE) fed either with rumen-protected lysine (bypass lysine; 40 g/cow per day) or without rumen-protected lysine (control). Sixty-eight third-lactation Holstein dairy cows entering their fourth lactation were randomly allocated to 4 treatments groups: HE with bypass lysine, HE without bypass lysine, LE with bypass lysine, and LE without bypass lysine. Groups were balanced based upon their expected calving date, previous milk yields, and body condition score. All cows were fed the same diet (NEL = 1.34 Mcal/kg of DM) during the dry period prior to the trial. Rumen-protected lysine was top-dressed on a total mixed ration to deliver 9.68 g/d of metabolizable lysine to pre- and postpartum cows. After calving, all cows received the same TMR (1.69 Mcal/kg of DM). Blood samples were collected at ?21, ?14, ?7, 0, 3, 7, 14, and 21 d relative to calving, and free fatty acids and β-hydroxybutyrate concentrations were measured. Amount of feed offered and orts were collected and measured for individual cows 4 d/wk. Milk samples were collected once per week following calving, and milk composition was analyzed. Feeding high NEL to close-up cows decreased the concentrations of free fatty acid and β-hydroxybutyrate in prepartum cows but not in postpartum cows. Addition of rumen-protected lysine increased postpartum DM intake, and decreased serum free fatty acid and β-hydroxybutyrate concentrations. Neither energy nor rumen-protected lysine supplementation nor their interaction affected milk yield or fat or lactose yields. However, cows in the group receiving HE with bypass lysine tended to produce more milk compared with other groups and had a lower blood β-hydroxybutyrate concentration postpartum. These results indicate that feeding a high-energy diet together with rumen-protected lysine improved DM intake and lowered serum free fatty acid and β-hydroxybutyrate concentrations in transition cows.  相似文献   

19.
The objectives of our study were to determine the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on production and metabolic responses of early-lactation dairy cows during the immediate postpartum period and to evaluate carryover effects of the treatment diets early in lactation. Fifty-six multiparous cows were used in a randomized complete block design and randomly assigned to 1 of 4 treatments (14 cows per treatment) fed from 1 to 24 d in milk (DIM). The treatments were: (1) control (CON) diet not supplemented with fatty acids (FA); (2) diet supplemented with a FA blend containing 80% C16:0 and 10% cis-9 C18:1 (80:10); (3) diet supplemented with a FA blend containing 70% C16:0 and 20% cis-9 C18:1 (70:20); and (4) diet supplemented with a FA blend containing 60% C16:0 and 30% cis-9 C18:1 (60:30). The FA supplement blends were added at 1.5% of diet DM by replacing soyhulls in the CON diet. All cows were offered a common diet from d 25 to 63 postpartum (carryover period) to evaluate carryover effects. Three preplanned contrasts were used to compare treatment differences: CON versus FA-supplemented diets (80:10 + 70:20 + 60:30)/3; the linear effect of cis-9 C18:1 inclusion in diets; and the quadratic effect of cis-9 C18:1 inclusion in diets. During the treatment period, FA-supplemented diets increased milk yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) compared with CON. Compared with CON, FA-supplemented diets increased milk fat content, milk fat yield, yield of mixed FA, and tended to increase protein yield and lactose yield. Also, compared with CON, FA-supplemented diets tended to increase body condition score (BCS) change. A treatment by time interaction was observed for body weight (BW), due to 80:10 inducing a greater BW loss over time compared with other treatments. Increasing cis-9 C18:1 in FA treatments tended to linearly increase dry matter intake (DMI) but did not affect milk yield, 3.5% FCM, ECM, and the yields of milk fat, protein and lactose. Increasing cis-9 C18:1 in FA treatments linearly decreased milk fat content and milk lactose content. Also, increasing cis-9 C18:1 in FA treatments linearly decreased BW and BCS losses. During the carryover period, compared with CON, FA-supplemented diets tended to increase milk yield. Also, FA-supplemented diets increased 3.5% FCM, ECM, and milk fat yield, and tended to increase milk protein yield compared with CON. A treatment by time interaction was observed for BW due to 80:10 increasing BW over time compared with CON. Our results indicate that feeding FA supplements containing C16:0 and cis-9 C18:1 during the immediate postpartum period increased milk yield and ECM compared with a nonfat supplemented control diet. Increasing cis-9 C18:1 in the FA supplement increased DMI and reduced BW and BCS losses. Additionally, the fat-supplemented diets fed during the immediate postpartum period had a positive carryover effect during early lactation, when cows were fed a common diet.  相似文献   

20.
《Journal of dairy science》2023,106(9):5988-6004
Peripartum rumen-protected choline (RPC) supplementation is beneficial for cow health and production, yet the optimal dose is unknown. In vivo and in vitro supplementation of choline modulates hepatic lipid, glucose, and methyl donor metabolism. The objective of this experiment was to determine the effects of increasing the dose of prepartum RPC supplementation on milk production and blood biomarkers. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to one of 4 prepartum choline treatments that were fed from −21 d relative to calving (DRTC) until calving. From calving until +21 DRTC, cows were fed diets targeting 0 g/d choline ion (control, CTL) or the recommended dose (15 g/d choline ion; RD) of the same RPC product that they were fed prepartum. The resulting treatments targeted: (1) 0 g/d pre- and postpartum [0.0 ± 0.000 choline ion, percent of dry matter (%DM); CTL]; (2) 15 g/d pre- and postpartum of choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.004 choline ion, %DM; ReaShure, Balchem Corp.; RPC1RD▸RD); (3) 15 g/d pre- and postpartum of choline ion from a concentrated RPC prototype (prepartum: 0.09 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; RPC2, Balchem Corp.; RPC2RD▸RD); or (4) 22 g/d prepartum and 15 g/d postpartum from RPC2 [prepartum: 0.13 ± 0.005 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; high prepartum dose (HD), RPC2HD▸RD]. Treatments were mixed into a total mixed ration, and cows had ad libitum access via a roughage intake control system (Hokofarm Group). From calving to +21 DRTC, all cows were fed a common base diet and treatments were mixed into the total mixed ration (supplementation period, SP). Thereafter, all cows were fed a common diet (0 g/d choline ion) until +100 DRTC (postsupplementation period, postSP). Milk yield was recorded daily and composition analyzed weekly. Blood samples were obtained via tail vessel upon enrollment, approximately every other day from −7 to +21 DRTC, and at +56 and +100 DRTC. Feeding any RPC treatment reduced prepartum dry matter intake compared with CTL. During the SP, no evidence for a treatment effect on energy-corrected milk (ECM) yield was found, but during the postSP, RPC1RD▸RD and RPC2RD▸RD treatments tended to increase ECM, protein, and fat yields. During the postSP, the RPC1RD▸RD and RPC2RD▸RD treatments tended to increase, and RPC2HD▸RD increased, the de novo proportion of total milk fatty acids. During the early lactation SP, RPC2HD▸RD tended to increase plasma fatty acids and β-hydroxybutyrate concentrations, and RPC1RD▸RD and RPC2RD▸RD reduced blood urea nitrogen concentrations compared with CTL. The RPC2HD▸RD treatment reduced early lactation serum lipopolysaccharide binding protein compared with CTL. Overall, peripartum RPC supplementation at the recommended dose tended to increase ECM yield postSP, but no evidence was seen of an additional benefit on milk production with an increased prepartum dose of choline ion. The effects of RPC on metabolic and inflammatory biomarkers support the potential for RPC supplementation to affect transition cow metabolism and health and may support the production gains observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号