首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus is a major pathogen causing intramammary infections (IMI) in dairy cattle herds worldwide. Simulation models can be used to investigate the epidemiologic and economic outcomes of different control strategies against IMI. The transmission rate parameter is one of the most influential parameters on the outcomes of these simulation models. Very few studies have estimated the transmission rate parameter and investigated the transmission dynamics of Staph. aureus IMI in dairy cattle herds. The objective of our study was therefore to analyze the transmission dynamics of Staph. aureus in 2 Danish dairy herds participating in a longitudinal study. The 2 herds had 180 and 360 milking cows, and animals were tested at quarter level once per month over a period of 1 yr. We estimated the quarter-level prevalence to be 34% for herd 1 and 2.57% for herd 2. The daily quarter-level transmission rate was estimated to be 0.0132 and 0.0077 cases/quarter-day for herds 1 and 2, respectively, and the median duration of infection was estimated to be 91 and 64 d for herds 1 and 2, respectively. We also estimated the reproductive ratio at 1.21 for herd 1 and 0.52 for herd 2. The results can provide valuable information for simulation models to aid decision-making in terms of the prevention and control of Staph. aureus IMI in dairy cattle herds.  相似文献   

2.
Promotion of animal health and well-being at the individual animal and herd level is an important goal in organic farming. At the same time, chemical products affecting the natural balance among living organisms are prohibited in all areas of the organic farm. From an animal welfare point of view, however, no animal must suffer. Therefore, veterinary drugs are allowed under the European Union's regulations for organic farming, despite the fact that they are powerful cell toxins affecting both pathogenic and necessary bacteria, and as such in organic terminology, are regarded as “chemical” or “artificial” products. In this article, we present and discuss interviews with 12 Danish organic dairy producers who claim that minimized use or nonuse of antimicrobial drugs is an explicit goal. The dairy producers were at different levels with regard to reduced antimicrobial treatment. An explicit strategy of no antimicrobial treatments is based primarily on a long-term effort to improve herd health, and secondarily, on finding alternative treatments for diseased animals. Improved hygiene, outdoor access, use of nursing cows, and blinding of chronic mastitis quarters were the main techniques in developing a strategy of not using antimicrobial treatments in the herd by dairy producers. Producers’ perception of disease changed from something unavoidable to a disturbing break in the daily rhythm that often could have been avoided. Change toward a nonantimicrobial strategy was gradual and stepwise. All dairy producers in this study desired to preserve the possibility of using antimicrobial drugs in emergencies.  相似文献   

3.
Weekly body condition score (BCS) and live weight records were used to calculate energy content (EC) and cumulative effective energy balance (CEEB) for 508 Holstein-Friesian cows in their first lactation. Cows were raised on an experimental farm and had calved between 1991 and 2000. Energy content was an estimate of the actual energy level of a cow at any given stage of lactation, whereas CEEB was associated with the total body energy content as defined by accumulated weekly energy balance changes since the onset of lactation. Genetic evaluations were computed for the 3 body energy traits (BCS, EC, and CEEB) for each week of first lactation. Random regression models were used to assess the association between first-lactation weekly genetic evaluations for body energy and monthly test-day log-transformed SCC, clinical mastitis, and other udder problems in the first 3 lactations. There was a significant effect of at least one body energy trait at any stage of first lactation past wk 3 on SCC in the first 3 lactations. Maximum genetic correlation estimates were −0.18 (±0.04) between wk-16 BCS and SCC in the first 2 lactations, −0.18 (±0.04) between wk-11 EC and SCC in the first 2 lactations, and −0.17 (±0.07) between wk-6 CEEB and SCC in the first 2 lactations. The effect of body energy traits on clinical mastitis was, in general, nonsignificant; nevertheless, moderate genetic correlations were estimated, ranging from −0.05 (±0.07) to −0.25 (±0.15). The effect of body energy traits on udder problems other than mastitis was negligible in all cases. Results suggest that, amongst the traits studied here, BCS, EC, and CEEB in the first 3 to 4 mo of lactation 1 had the greatest genetic association with SCC and mastitis in first, second, and, to a lesser extent, third lactations.  相似文献   

4.
《Journal of dairy science》2023,106(6):3761-3778
Treatment of clinical mastitis (CM) and use of antimicrobials for dry cow therapy are responsible for the majority of animal-defined daily doses of antimicrobial use (AMU) on dairy farms. However, advancements made in the last decade have enabled excluding nonsevere CM cases from antimicrobial treatment that have a high probability of cure without antimicrobials (no bacterial causes or gram-negative, excluding Klebsiella spp.) and cases with a low bacteriological cure rate (chronic cases). These advancements include availability of rapid diagnostic tests and improved udder health management practices, which reduced the incidence and infection pressure of contagious CM pathogens. This review informed an evidence-based protocol for selective CM treatment decisions based on a combination of rapid diagnostic test results, review of somatic cell count and CM records, and elucidated consequences in terms of udder health, AMU, and farm economics. Relatively fast identification of the causative agent is the most important factor in selective CM treatment protocols. Many reported studies did not indicate detrimental udder health consequences (e.g., reduced clinical or bacteriological cures, increased somatic cell count, increased culling rate, or increased recurrence of CM later in lactation) after initiating selective CM treatment protocols using on-farm testing. The magnitude of AMU reduction following a selective CM treatment protocol implementation depended on the causal pathogen distribution and protocol characteristics. Uptake of selective treatment of nonsevere CM cases differs across regions and is dependent on management systems and adoption of udder health programs. No economic losses or animal welfare issues are expected when adopting a selective versus blanket CM treatment protocol. Therefore, selective CM treatment of nonsevere cases can be a practical tool to aid AMU reduction on dairy farms.  相似文献   

5.
A qualitative research study was conducted to describe and analyze farmers' perspectives on their own choices regarding decisions to have cows treated for mastitis. Through qualitative research interviews of 16 Danish dairy farmers, four levels of the decision-making process used by farmers to decide whether or not to treat a cow with antibiotics were identified. Those levels were: 1) symptom level (seriousness of the mastitis case), 2) cow level (to the extent a cow fulfilled goals of the farmer and the herd), 3) herd level (the situation of the herd, e.g., in relation to milk quota), and 4) level of alternatives (whether the farmer regards such practices as blinding of teats or homoeopathy as serious alternatives to antibiotic treatment). All four levels could be recognized in all herds, but with differing weights and relative importance across herds. Directions of different possibilities within each level also varied among farmers. By identifying those four levels, a model for understanding the farmers' choices is provided. This provides background for dialogue with each farmer about choices in the context of each specific herd. It also provides insight into implications of mastitis treatments for effective treatment versus issues of antibiotic resistance when discussing choices on a more general level. Communication and understanding between farmers and their veterinarians and cattle-oriented advisors is essential. Farmers were shown to be coherent in their choices of treatment, but their decisions often seemed to differ from normal veterinary recommendations. Such differences have to be understood and implemented into effective decisions for the whole farm.  相似文献   

6.
The purpose of this study was to map quantitative trait loci (QTL) affecting health traits in Swedish dairy cattle. A genome scan covering 17 chromosomes was performed. Ten grandsire families were used in a granddaughter design. Nine of the families belonged to the Swedish Red and White breed, which is related to other Nordic Ayrshire breeds, and one family was of the Swedish Holstein breed. A total of 417 bulls were genotyped for 116 microsatellite markers distributed over 17 chromosomes. Daughter yield deviations for clinical mastitis, somatic cell count (SCC), and other diseases (OD) were included in the analysis. Least squares interval mapping using putative QTL as cofactors was applied both within and across grandsire families. Significance thresholds were set by permutation tests. In the across-family analysis, we detected 8 suggestive QTL and 3 QTL significant at the genome level. The QTL affecting clinical mastitis were found on 3 chromosomes (9, 11, and 25), 4 QTL for SCC were found (on chromosomes 5, 9, 11, and 23), and we detected 4 QTL for OD (on chromosomes 9, 11, 15, and 25). In addition, we found several QTL that segregated within single families but where the QTL effect was not significant in the across-family analysis. In conclusion, we were able to locate QTL for all 3 analyzed traits, and overlapping QTL for several traits were observed.  相似文献   

7.
Udder cleft dermatitis (UCD) is a skin lesion in dairy cattle mostly located at the anterior junction between the udder and the abdominal wall or between the front quarters. Relatively little is known about causative factors for UCD, and few studies have investigated prevalence and risk factors of UCD. Therefore, the aim of this study was to investigate the prevalence of UCD in a random sample of dairy herds with freestalls and milking parlors in a county of Sweden. Thirty dairy herds participated in the study. Each herd was visited once at milking, when every third cow was investigated for presence of UCD. Associations between UCD and milk production, breed, parity, days in milk, claw health, and udder health on the herd and cow levels were also investigated. In addition, a case-control study was performed in 6 herds with a high prevalence of UCD to investigate associations between udder conformation or mange and UCD. Udder cleft dermatitis was found in 18.4% of the 1,084 cows included in the study. The within-herd cow prevalence varied between zero and 39%, with an average of 18.5%. Risk factors for UCD at the herd level were a high proportion of Swedish Red cows and a high production level. At the cow level, breed, parity, and production level were identified as risk factors. The highest risk of having UCD was found in high-producing Swedish Red cows that had calved at least 3 times. Veterinary-treated clinical mastitis was associated with UCD, but cow composite somatic cell count was not. A strong anterior udder attachment was a protective factor, but signs of mange had no association with UCD. The primary cause of UCD is still unclear, and more research is needed to identify the best ways to prevent the development of this animal welfare problem.  相似文献   

8.
《Journal of dairy science》2023,106(5):3421-3435
Staphylococcus aureus is a major mastitis pathogen in dairy cattle worldwide, responsible for substantial economic losses. Environmental factors, milking routine, and good maintenance of milking equipment have been described as important factors to prevent intramammary infections (IMI). Staphylococcus aureus IMI can be widespread within the farm or the infection can be limited to few animals. Several studies have reported that Staph. aureus genotypes differ in their ability to spread within a herd. In particular, Staph. aureus belonging to ribosomal spacer PCR genotype B (GTB)/clonal complex 8 (CC8) is associated with high within-herd prevalence of IMI, whereas other genotypes are generally associated with individual cow disease. The adlb gene seems to be strictly related to Staph. aureus GTB/CC8, and is a potential marker of contagiousness. We investigated Staph. aureus IMI prevalence in 60 herds in northern Italy. In the same farms, we assessed specific indicators linked to milking management (e.g., teat condition score and udder hygiene score) and additional milking risk factors for IMI spread. Ribosomal spacer-PCR and adlb-targeted PCR were performed on 262 Staph. aureus isolates, of which 77 underwent multilocus sequence typing. In most of the herds (90%), a predominant genotype was identified, especially Staph. aureus CC8 (30%). In 19 of 60 herds, the predominant circulating Staph. aureus was adlb-positive and the observed IMI prevalence was relevant. Moreover, the adlb gene was detected only in genotypes of CC8 and CC97. Statistical analysis showed a strong association between the prevalence of Staph. aureus IMI, the specific CCs, and carriage of adlb, with the predominant circulating CC and presence of the gene alone explaining the total variation. Interestingly, the difference in the odds ratio obtained in the models for CC8 and CC97 suggests that it is carriage of the adlb gene, rather than the circulation of these CCs per se, that leads to higher within-herd prevalence of Staph. aureus. In addition, the model showed that environmental and milking management factors had no or minimal effect on Staph. aureus IMI prevalence. In conclusion, the circulation of adlb-positive Staph. aureus strains within a herd has a strong effect on the prevalence of IMI. Thus, adlb can be proposed as a genetic marker of contagiousness for Staph. aureus IMI in cattle. However, further analyses using whole-genome sequencing are required to understand the role of genes other than adlb that may be involved in the mechanisms of contagiousness of Staph. aureus strains associated with high prevalence of IMI.  相似文献   

9.
The aim of this study was to investigate the association between udder health (UH) status and blood serum proteins (i.e., total protein, albumin, globulin, and albumin-to-globulin ratio) in dairy cows. Blood and milk samples were collected from 1,508 cows of 6 different breeds (Holstein Friesian, Brown Swiss, Jersey, Simmental, Rendena, and Alpine Grey) that were housed in 41 multibreed herds. Bacteriological analysis was performed on milk samples with somatic cell count (SCC) >100,000 cells/mL and bacteria identification was confirmed by multiplex-PCR assays. Milk samples were grouped into 7 clusters of UH status: healthy (cows with milk SCC <100,000 cells/mL and not cultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples with contagious, environmental, and opportunistic intramammary infections. Data of blood serum proteins were analyzed using a linear mixed model that included the fixed effects of stage of lactation, parity, breed, herd productivity (high or low production) and UH status, and the random effect of herd-date within herd productivity. Culture-negative samples with high milk SCC, which were most likely undergoing a strong inflammatory response and whose pathogens could not be isolated because they were engulfed by macrophages or because they had already cleared, and milk samples infected by contagious and environmental bacteria were associated with greater globulin concentrations (and lower albumin-to-globulin ratio) in blood. Variation in blood serum proteins seems to be associated with inflammatory status rather than infection, as serum globulin significantly increased in UH status groups with the highest milk SCC and no differences were observed among intramammary infections pathogens. Blood serum proteins can be a mammary gland inflammation indicator, but cannot be used to differentiate among different UH status groups.  相似文献   

10.
A cross-sectional study was conducted to explore the applicability of systematic clinical examinations of udders as an additional tool for the evaluation of udder health status on dairy farms. During 2000, each of the 16 dairy farms was visited 5 times; 20 cows per farm were chosen at random at each visit for clinical udder examination immediately after milking. The clinical examination included both pathological and morphological variables. One examination per cow was included in the analysis (n = 707 cows). Principal component analysis (PCA) was performed in 3 steps. First, 19 variables characterizing udder and teats were analyzed (PCA 1). Second, the variables parity and stage of lactation were included (PCA 2). Finally, somatic cell count (SCC) and milk yield (PCA 3) were included. The PCA resulted in 4 components that explained 30% of the variation of the data: 1) small udder, 2) distressed udder, 3) mastitis udder, and 4) soiled udder. Variables with high positive correlation to the "small udder" were small udder shape, short teats, and first parity. Impaired teat surface, hard udder texture, and a long udder shape were related to the "distressed udder." The "mastitis udder" was characterized by the clinical variables asymmetry between front quarters, asymmetry between hind quarters, knotty tissue, and acute clinical mastitis. Reduced milk yield and high SCC were related to the "mastitis udder," whereas low SCC was related to the "small udder." The "soiled udder" was related to early lactation. Including this information in the assessment of udder health may be of substantial value for data analysis in farms with suspected under-reporting of clinical mastitis.  相似文献   

11.
《Journal of dairy science》2022,105(6):5167-5177
In addition to somatic cell count records and clinical mastitis diagnoses, results of bacteriological milk analyses provide valuable information regarding udder health. The pathogen causing an udder infection is currently not considered in Austria as part of the information used for estimation of routine breeding values for mastitis resistance. Therefore the objective of this study was to estimate heritabilities for, and genetic correlations between, udder traits of bacterial infection (bacterial infection, gram-positive and gram-negative bacterial infection) and routinely recorded udder health traits [acute mastitis, chronic mastitis, culling due to udder health problems, and somatic cell score (SCS)] in Austrian Fleckvieh cows. The basis for the genetic analyses was a data set with results from bacteriological milk analyses collected from 237 dairy farms and 6,822 cows over a period of 1 yr. Traits were defined as binary, apart from SCS, for which measures were available continuously. Multivariate analyses using a linear animal model were applied for estimating genetic parameters. The heritabilities for the occurrence of bacterial udder infection traits were 0.01. Heritabilities were 0.04 for acute mastitis, 0.02 for chronic mastitis, 0.02 for culling due to udder health problems, and 0.20 for SCS. Genetic correlations between bacteriological infection and the routinely recorded udder health traits were positive and ranged from 0.62 to 0.96. The genetic correlation between gram-positive and gram-negative bacterial infection was ?0.20. The genetic correlation between acute and chronic mastitis was also close to zero. These results show that mastitis caused by different pathogens may be seen as different traits. As analyses were based on a relatively small data set and results were associated with rather high standard errors, further research with a larger data set should be carried out to confirm these results.  相似文献   

12.
There has been a rapid rise in the emergence of multi-drug-resistant pathogens in the past 10 to 15 yr and some bacteria are now resistant to most antimicrobial agents. Antibiotic use is very restricted on Swiss organic dairy farms, and a purely prophylactic use, such as for dry cow mastitis prevention, is forbidden. A low prevalence of antibiotic resistance in organic farms can be expected compared with conventional farms because the bacteria are infrequently or not exposed to antibiotics. The occurrence of antibiotic resistance was compared between mastitis pathogens (Staphylococcus aureus, nonaureus staphylococci, Streptococcus dysgalactiae, Streptococcus uberis) from farms with organic and conventional dairy production. Clear differences in the percentage of antibiotic resistance were mainly species-related, but did not differ significantly between isolates from cows kept on organic and conventional farms, except for Streptococcus uberis, which exhibited significantly more single resistances (compared with no resistance) when isolated from cows kept on organic farms (6/10 isolates) than on conventional farms (0/5 isolates). Different percentages were found (albeit not statistically significant) in resistance to ceftiofur, erythromycin, clindamycin, enrofloxacin, chloramphenicol, penicillin, oxacillin, gentamicin, tetracycline, and quinupristin-dalfopristin, but, importantly, none of the strains was resistant to amoxicillin-clavulanic acid or vancomycin. Multidrug resistance was rarely encountered. The frequency of antibiotic resistance in organic farms, in which the use of antibiotics must be very restricted, was not different from conventional farms, and was contrary to expectation. The antibiotic resistance status needs to be monitored in organic farms as well as conventional farms and production factors related to the absence of reduced antibiotic resistance in organic farms need to be evaluated.  相似文献   

13.
Clinical mastitis was analyzed with mixed linear models (LM) and survival analysis (SA) using data from the first 3 lactations of >200,000 Swedish Holstein cows having their first calving between 1995 and 2000. The model for both methods included fixed effects of year-month and age at calving, fixed regressions of proportions of heterosis and North American Holstein genes, and random effects of herd-year at calving and sire. For the LM, clinical mastitis was defined as a binary trait measured from 10 d before to 150 d after calving. For the SA, clinical mastitis was defined either as the time period from 10 d before calving to the day of first treatment or culling because of mastitis (uncensored record) or from 10 d before to the day of next calving, culling for reasons other than mastitis, movement to a new herd, or to lactation d 240 (censored record). The heritability estimates from SA (0.03 to 0.04) were higher than those obtained with the LM (0.01 to 0.03). Consequently, the accuracies of estimated transmitting abilities were also higher for the trait analyzed with SA. The difference between estimates from the 2 methods was greater for later lactations. This study reveals the potential of analyzing clinical mastitis data with SA.  相似文献   

14.
Crossbreeding has been shown to improve the longevity of dairy cattle in countries across the world. The aim of this study was to estimate heterosis, breed effects, and genetic parameters for longevity in crossbred dairy cattle among Danish Holstein (DH), Danish Red (DR), and Danish Jersey (DJ) breeds. Data were provided from 119 Danish commercial herds that use systematic crossbreeding (i.e., rotational crossbreeding). Additional data from 11 mixed-breed herds with DH and DJ were included to estimate reliable breed effects for DJ. Survival information on 73,741 cows was analyzed with a linear animal model using the artificial insemination–REML algorithm in the DMU package. Five longevity (L) traits were defined: days from first calving until the end of first lactation or culling (L1), days from first calving until the end of second lactation or culling (L2), days from first calving until the end of third lactation or culling (L3), days from first calving until the end of fourth lactation or culling (L4), and days from first calving until the end of fifth lactation or culling (L5). Heritabilities ranged between 0.022 and 0.090. Additive breed effects in units of days were estimated relative to DH for DR as ?0.5 (L1), +10.5 (L2), +18.5 (L3), +11.9 (L4), and +28.6 (L5), and corresponding figures for DJ were +2.0, +0.5, +14.2, +27.7, and +44.0. Heterosis effects in L1 were low (1.2%) but favorable in crosses between DH and DR, whereas negative heterosis effects were estimated for crosses between DH and DJ (?2.5%) and DR and DJ (?1.2%). The largest heterosis effects for L2, L3, L4, and L5 were found in DH × DR and were favorable (+3.3, +5.7, +7.7, and +8.5%, respectively). Corresponding figures for heterosis effects in DH × DJ and DR × DJ were favorable as well: +2.3, +4.1, +5.6, and +6.2% in DH × DJ and +3.1, +7.3, +6.9, and +7.2% in DR × DJ. The favorable heterosis effects show that crossbreeding is an efficient tool for improving longevity in Danish dairy cattle.  相似文献   

15.
Preparturient heifers (n = 561) from 9 herds in 6 US states and 1 Canadian province were enrolled in a study to test the hypothesis that prepartum intramammary therapy would cure existing intramammary infections (IMI) and lead to increased milk production, reduced linear somatic cell count (LSCC), and improved reproductive performance. Mammary secretions were collected 10 to 21 d before expected calving from each quarter. Heifers were then assigned by identification number to receive intramammary therapy consisting of infusion of one tube per mammary quarter of a lactating cow commercial antibiotic preparation containing cephapirin or to a nontreated control group. Overall, 34.1% of mammary quarters were infected with a mastitis pathogen before parturition and 63.4% of heifers had at least one mammary quarter infected. The coagulase-negative staphylococci (CNS) caused the majority (74.8%) of prepartum IMI. Coagulase-positive staphylococci, environmental streptococci, and coliforms accounted for 24.5% of prepartum infections. Treatment had a significant effect on the cure rate of infected mammary quarters. Mammary quarters that were infected prepartum and treated with antibiotics had a 59.5% efficacy of cure rate and the percentage reduction in heifers with IMI was 51.9. Control quarters had a spontaneous cure rate of 31.7%. Treatment did not significantly affect milk production or LSCC in the first 200 d of lactation; however, there was a significant treatment by herd interaction for milk production. Quarters cured of either CNS or major pathogens had a lower LSCC in the first 200 d of lactation. No significant effect on services per conception or days open between treatment and control groups was observed. This trial demonstrated that prepartum intramammary antibiotic therapy did reduce the number of heifer IMI postpartum. Milk production, LSCC, and reproductive performance during the first 200 d of the first lactation were not significantly affected by treatment. Given these results, use of prepartum intramammary antibiotic therapy in heifers as a universal strategy to increase milk production in first-lactation dairy cows may not be warranted.  相似文献   

16.
Our objective was to identify specific blood markers as risk factors for the development of mastitis during early lactation. We used a subset of cows from a larger experiment that consisted of a total of 634 lactations from 317 cows. Cows were of 3 breeds and ranged from parity 1 to 4. Blood samples were collected weekly from 56 d before expected calving date through 90 d in milk (DIM). Blood was analyzed for several hormones, metabolites, and enzymes, and energy intake and energy balance were calculated. Veterinary treatment records and daily composite milk somatic cell counts were analyzed and used to determine incidence and severity of mastitis in early lactation. Cows were separated into 2 groups: 1) WK0, consisting of cows that developed clinical mastitis (CM), cows that developed subclinical mastitis (SM), or cows that were healthy (H) during the first 7 DIM; and 2) EL, consisting of CM, SM, or H cows during wk 2 through 13 of lactation. Data were adjusted for numerous fixed effects (e.g., parity, breed, season, and DIM) before statistical analysis. The time of mastitis (TOM) was recorded as the DIM in which the first rise in somatic cell count was observed and was recorded as TOM = 0. The time before and after TOM was distinguished as ± n wk relative to TOM = 0. Healthy cows were paired with either a SM or CM cow and the TOM for each H cow was equal to the TOM for its paired SM or CM cow. Data from wk −1 and −2 relative to TOM were analyzed for group WK0 and EL, respectively. For all parameters, SM cows did not differ from H cows from either group. The CM cows had higher nonesterified fatty acid levels and a tendency toward higher β-hydroxybutyrate levels than H cows before mastitis for both groups. For group WK0, glucose was higher −1 wk relative to calving in CM than H cows. For group EL, aspartate aminotransferase was higher −2 wk relative to mastitis in CM than H cows during 8 to 90 DIM. All other variables were similar among CM, SM, and H cows for both groups. Our results indicate that substances in blood, especially nonesterified fatty acids and aspartate aminotransferase, may be potential markers for the risk of mastitis in early lactation.  相似文献   

17.
Automatic milking (AM) is increasing in modern dairy farming, and over 8,000 farms worldwide currently use this technology. Automatic milking system is designed to replace conventional milking managed by a milker in a milking parlor or in tie stalls. Cows are generally milked more frequently in AM than in conventional milking, and milking is quarter-based instead of udder-based. Despite improvements in the milking process and often building of a new barn before the introduction of AM, udder health of the cows has not improved; on the contrary, problems may appear following conversion from conventional milking to AM. This review focuses on udder health of dairy cows in AM, and we discuss several aspects of cow and milking management in AM associated with udder health. Finally, adequate management methods in AM are suggested. According to several studies comparing udder health between automatic and conventional milking or comparing udder health before and after the introduction of automatic milking in the same herds, udder health has deteriorated during the first year or more after the introduction of AM. Automatic detection of subclinical and clinical mastitis and cleaning the teats before milking are challenges of AM. Failures in mastitis detection and milking hygiene pose a risk for udder health. These risk factors can partly be controlled by management actions taken by the farmer, but AM also needs further technical development. To maintain good udder health in AM, it is imperative that the barn is properly designed to keep the cows clean and the cow traffic flowing. Milking frequency must be maintained for every cow according to its stage of lactation and milk production. Careful observation of the cows and knowledge of how to use all data gathered from the system are also important. “Automatic” does not mean that the role of a competent herdsman is in any way diminished.  相似文献   

18.
Antimicrobials are frequently used for treatment of bovine mastitis and few studies have examined modern treatment strategies on large US dairy farms. The objective of this study was to describe treatment practices for clinical mastitis occurring in cows on large dairy herds in Wisconsin. Treatments performed on 747 cows experiencing cases of mild, moderate, or severe symptoms of clinical mastitis were recorded on 51 Wisconsin dairy farms. Duplicate milk samples were collected from the affected quarter for microbiological analysis at the onset of clinical mastitis and 14 to 21 d after treatment ended. Cows were treated according to individual farm protocol. Drugs and doses used for treatments were recorded for each case. Among all herds, 5 intramammary (IMM) antimicrobials (amoxicillin, hetacillin, pirlimycin, ceftiofur, and cephapirin) were used to treat cows for clinical mastitis. Of 712 cows with complete treatment data, 71.6% were treated with IMM ceftiofur either solely or combined with other antimicrobials (administered either IMM or systemically). Of cows experiencing severe symptoms of clinical mastitis, 43.8% received IMM treatment concurrent with systemic antimicrobials. Of all cows treated, 23.1% received an additional secondary treatment (either IMM, systemic, or both) because of perceived lack of response to the initial treatment. The majority of IMM treatments were administered to cows with a microbiological diagnosis of no growth (34.9%) or Escherichia coli (27.2%). Half of the cows experiencing cases caused by E. coli were treated using systemic antimicrobials in contrast to only 6.8% of cows experiencing cases caused by coagulase-negative staphylococci. In conflict with FDA regulations, which do not allow extra-label treatments using sulfonamides, a total of 22 cows from 8 farms were treated with systemic sulfadimethoxine either solely or in combination with oxytetracycline. Antimicrobial drugs were used on all herds and many cows received extra-label treatments. Great opportunity exists to improve mastitis therapy on large dairy herds, but use of more diagnostic methodologies is necessary to guide treatments. Farmers and veterinarians should work together to create protocols based on the herd needs considering reduced inappropriate and excessive use of antimicrobials.  相似文献   

19.
20.
《Journal of dairy science》2023,106(8):5740-5752
Lactational treatment of bovine mastitis is a major contributor to antibiotic consumption in dairy cattle and is, therefore, important to address in light of the increasing problem of antibiotic resistance. In this large-scale database-based retrospective observational study, we combined electronic health records and routinely measured somatic cell counts from individual cows to create an overview of lactational mastitis treatment in Danish dairy herds from 2010 to 2019. Furthermore, posttreatment somatic cell count was used to approximate treatment success in terms of cytological cure. A generalized logistic regression with mixed effects was performed to combine knowledge on cow-level factors (treatment-, pathogen-, and cow-related) with the new infection risk at the herd level, and to explore the relative effect on cytological cure. The investigation revealed that the total number of lactational treatments appears to have decreased steadily over the study period, whereas treatment duration increased slightly. The proportion of cases treated with penicillin-based protocols and the proportion of milk samples sent for pathogen analysis also decreased. Meanwhile, results from the statistical analysis confirm the importance of cow-related factors, such as parity and lactation stage, for the probability of cytological cure following lactational treatment of mastitis. However, they also disclose that factors that are easier to adjust, such as optimizing treatment duration, including knowledge on causative pathogens and improving the herd-level new infection risk that can be used to positively influence the outcome. Application of this knowledge could potentially assist in promoting a more prudent use of antibiotics for dairy cattle in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号