首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF-3 d-GnRH-7 d-GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy—characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity—explained the increment in P/AI to first service. Our data also indicated that despite having greater P/AI to first service, cows with the longer VWP had delayed time to pregnancy during lactation (hazard ratio = 0.72; 95% confidence interval 0.69–0.98) and greater risk of leaving the herd, particularly for multiparous cows (hazard ratio = 1.34; 95% confidence interval 1.23–1.47). This shift in pregnancy timing led to an overall extension of the lactation length (+13 d), which resulted in greater total milk yield per lactation (+491 kg) but not greater milk yield per day of lactation. In conclusion, data from this experiment highlight the importance of considering the complex interactions between reproductive performance, herd exit dynamics, and lactation performance as well as the effects of parity at the time of defining the duration of the VWP for lactating dairy cows.  相似文献   

2.
The objective of this study was to compare cash flow and parameters of economic performance for dairy cows submitted to the first service using a combination of insemination at detected estrus and timed AI (TAI) in cows synchronized with the Presynch-Ovsynch (PSOv) protocol versus all TAI after synchronization of ovulation with the Double-Ovsynch (DO) protocol with different durations of the voluntary waiting period. A secondary objective was to calculate the variation in cash flow under different input pricing scenarios through stochastic Monte Carlo simulation. Lactating Holstein cows from a commercial dairy farm were randomly assigned to 3 first-service management programs. Cows in the PSOv treatment (n = 450) received first service through a combination of insemination at detected estrus after a voluntary waiting period of 50 d in milk (DIM; i.e., after second PGF treatment of the protocol) and TAI at 72 ± 3 DIM. Cows in the DO60 (n = 458) and DO88 (n = 462) treatments received first service by TAI at 60 ± 3 and 88 ± 3 DIM, respectively. Individual cow cash flow was calculated for the calving interval after enrollment and for an 18-mo period after calving. Cash flow was the aggregation of daily income over feed cost, replacement cost, calf value, recombinant bovine somatotropin treatment cost, reproductive cost, and other operating expenses. All analyses were conducted separately for primiparous and multiparous cows. Continuous, binomial, and time to event outcomes were analyzed using ANOVA, logistic regression, and Cox's proportional hazard regression in SAS (SAS Institute Inc., Cary, NC). Treatments affected the dynamics of pregnancy creation, which affected time to pregnancy during lactation. As a result, we observed differences in the proportion of nonpregnant cows at the end of lactation, herd exit dynamics, lactation length, calving interval, and proportion of cows that calved again. Some of these effects varied by parity, affecting the direction and magnitude of treatment differences within parity group. For primiparous cows, maximum cash flow differences per slot for the 18-mo period were in the range of $26 (PSOv > DO60) to $29 (DO88 > DO60) but did not differ statistically. For multiparous cows, maximum cash flow differences per slot for the 18-mo period were in the range of $122 (PSOv > DO88) to $155 (DO60 > DO88) but did not differ statistically. Despite the substantial differences in cash flow (in particular for multiparous cows) caused by the effect of treatments on reproductive performance, herd exit dynamics, and calving interval, large variability in overall cash flow among individual cows and compensation between multiple outcomes resulted in lack of statistical differences in cash flow. Outcomes from the stochastic analysis indicated that similar trends for differences between treatments would be observed under varying scenarios for economic input values. In conclusion, we did not detect statistically significant cash flow differences between the PSOv, DO60, and DO88 treatments, but numerical trends and stochastic simulation indicated that the DO88 and PSOv treatments were more economically favorable than the DO60 treatment for primiparous cows. For multiparous cows, the DO60 and PSOv treatments were more economically favorable than the DO88 treatment.  相似文献   

3.
《Journal of dairy science》2022,105(10):8411-8425
The primary objective of this randomized controlled experiment was to evaluate the insemination dynamic and reproductive performance of cows managed with a targeted reproductive management (TRM) program designed to prioritize artificial insemination (AI) at detected estrus (AIE) and optimize timing of AI by grouping cows based on detection of estrus during the voluntary waiting period (VWP). Our secondary objective was to evaluate reproductive outcomes for cows with or without estrus during the VWP. Lactating Holstein cows fitted with an ear-attached sensor for detection of estrus were randomly assigned to a TRM treatment that prioritized AIE based on detection of estrus during the VWP (TP-AIE; n = 488), a non-TRM treatment that prioritized AIE (P-AIE; n = 489), or an all timed AI (TAI) treatment with extended VWP (ALL-TAI; n = 491). In TP-AIE, cows with or without automated estrus alerts (AEA) recorded during the VWP received AIE if detected in estrus for at least 31 ± 3 or 17 ± 3 d after a 49 d VWP, respectively. Cows not AIE with or without AEA during the VWP received TAI after Ovsynch with progesterone supplementation and 2 PGF treatments (P4-Ov) at 90 ± 3 or 74 ± 3 d in milk (DIM), respectively. In P-AIE, cows received AIE if detected in estrus for 24 ± 3 d after a 49 d VWP, and if not AIE received TAI at 83 ± 3 DIM after P4-Ov. In ALL-TAI, cows received TAI at 83 ± 3 DIM after a Double-Ovsynch protocol. Data were analyzed by logistic and Cox's proportional hazard regression. The proportion of cows AIE did not differ for TP-AIE (71.0%) and P-AIE (74.6%). Overall P/AI at 39 d after first service was greater for the ALL-TAI (47.6%) than for the P-AIE (40.2%) and TP-AIE (39.5%) treatments. The hazard of pregnancy up to 150 DIM was greater for cows in TP-AIE (hazard ratio = 1.2; 95% confidence interval: 1.1–1.4) and P-AIE (hazard ratio = 1.2; 95% confidence interval: 1.1–1.4) than for cows in the ALL-TAI treatment which resulted in median time to pregnancy of 89, 89, and 107 d. Conversely, the proportion of cows pregnant at 150 DIM did not differ (ALL-TAI 78.5%, P-AIE 76.3%, TP-AIE 76.0%). Except for a few outcomes for which no difference was observed, cows detected in estrus during the VWP had better performance than cows not detected in estrus. Cows with AEA during the VWP were more likely to receive AIE, had greater P/AI, and greater pregnancy rate up to 150 DIM regardless of first service management. We conclude that a TRM program designed to prioritize AIE by grouping cows based on detection of estrus during the VWP was an effective strategy to submit cows for first service resulting in similar or improved performance than a non-TRM program that prioritized AIE or an all-TAI program with extended VWP. Also, AEA recorded during the VWP might be used as a strategy for identifying subgroups of cows with different reproductive performance.  相似文献   

4.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

5.
Presynchronization strategies, such as Presynch-Ovsynch and Double-Ovsynch, increase fertility to timed artificial insemination (TAI) compared with Ovsynch alone; however, simpler presynchronization strategies could reduce costs and simplify reproductive management. Lactating Holstein cows (n = 601) were randomly assigned to 1 of 2 presynchronization treatments before beginning an Ovsynch-56 protocol (GnRH at 70 ± 3 DIM, PGF 7 d later, GnRH 56 h after PGF, and TAI 16 h later at 80 ± 3 DIM) for first TAI. Cows (n = 306) in the first treatment (Double-Ovsynch; DO) were presynchronized using a modified Ovsynch protocol (GnRH at 53 ± 3 DIM, 7 d later PGF, and GnRH 3 d later) ending 7 d before the first GnRH injection (G1) of an Ovsynch-56 protocol. Cows (n = 295) in the second treatment (GGPG) were presynchronized using a single injection of GnRH 7 d before G1 of an Ovsynch-56 protocol at 63 ± 3 DIM. Blood samples were collected at G1 and the PGF injections of the Ovsynch-56 protocol to determine progesterone (P4) concentrations. Pregnancy diagnosis was performed using ultrasonography 32 d after TAI, and pregnant cows were reexamined 46 and 70 d after TAI. Overall, DO cows had more pregnancies per artificial insemination (P/AI) compared with GGPG cows 32 d after TAI (53 vs. 43%). Overall, P/AI did not differ by parity (primiparous vs. multiparous), and pregnancy loss did not differ between treatments or parities. More DO cows had P4 in a medium range (>0.5 to <4 ng/mL) at G1 of the Ovsynch-56 protocol compared with GGPG cows (82 vs. 50%), and more DO cows had high P4 (>4 ng/mL) at the PGF injection of the Ovsynch-56 protocol compared with GGPG cows (67 vs. 36%). Thus, presynchronization with a modified Ovsynch protocol increased P/AI after TAI at first AI by increasing synchrony to the Ovsynch-56 protocol compared with presynchronization using a single injection of GnRH.  相似文献   

6.
Our objectives were to evaluate the pattern of re-insemination, ovarian responses, and pregnancy per artificial insemination (P/AI) of cows submitted to different resynchronization of ovulation protocols. The base protocol started at 25 ± 3 d after artificial insemination (AI) and was as follows: GnRH, 7 and 8 d later PGF, GnRH 32 h after second PGF, and fixed timed AI (TAI) 16 to 18 h after GnRH. At 18 ± 3 d after AI, cows were randomly assigned to the G25 (n = 1,100) or NoG25 (n = 1,098) treatments. The protocol for G25 and NoG25 was the same, except that cows in NoG25 did not receive GnRH 25 ± 3 d after AI. At nonpregnancy diagnosis (NPD), 32 ± 3 d after AI, cows from G25 and NoG25 with a corpus luteum (CL) ≥15 mm in diameter and a follicle ≥10 mm completed the protocol (G25 CL = 272, NoG25 CL = 194), whereas cows from both treatments that did not meet these criteria received a modified Ovsynch protocol with P4 supplementation [controlled internal drug release insert plus GnRH, controlled internal drug release insert removal, and PGF 7 and 8 d later, GnRH 32 h after second PGF, and TAI 16 to 18 h after GnRH (G25 NoCL = 53, NoG25 NoCL = 78)]. Serum concentrations of progesterone (P4) were determined and ovarian ultrasonography was performed thrice weekly from 18 ± 3 d after AI until 1 d after TAI (G25 = 46, NoG25 = 44 cows). A greater percentage of NoG25 cows were re-inseminated at detected estrus (NoG25 = 53.5%, G25 = 44.6%), whereas more cows had a CL at NPD in G25 than NoG25 (83.7 and 71.3%). At 32 d after AI, P/AI was similar for G25 and NoG25 for inseminations at detected estrus (38.4 and 42.9%), TAI services for cows with no CL (40.4 and 36.7%), and for all services combined (39.6 and 39.0%). However, P/AI were greater for cows with a CL in G25 than NoG25 (40.6 and 32.8%) that received TAI. More cows ovulated spontaneously or in response to GnRH for the G25 than the NoG25 treatment (70 and 36%) but a similar proportion had an active follicle at NPD (G25 = 91% and NoG25 = 96%). The largest follicle diameter at NPD (G25 = 15.0 ± 0.4 mm, NoG25 = 16.5 ± 0.6 mm) and days since it reached ≥10 mm (G25 = 4.0 ± 0.3 d, NoG25 = 5.8 ± 0.6 d) were greater for the NoG25 than G25 treatment. For cows with a CL at NPD, CL regression after NPD, ovulation after TAI, and ovulatory follicle diameter did not differ. In conclusion, removing the first GnRH of a modified Resynch-25 protocol for cows with a CL at NPD and a modified Ovsynch protocol with P4 supplementation for cows without a CL at NPD resulted in a greater percentage of cows re-inseminated at detected estrus and a similar proportion of cows pregnant in spite of reduced P/AI for cows with a CL at NPD.  相似文献   

7.
Objectives were to evaluate the effects of inseminating cows observed in estrus following a PGF-based presynchronization protocol on reproductive and lactation performance. Weekly, Holstein cows (260 primiparous and 379 multiparous) were balanced by parity, body condition score at 3 d in milk (DIM), and previous lactation milk yield (multiparous cows) and assigned randomly to either of 2 reproductive programs. All cows received 2 injections of PGF at 35 and 49 DIM and a controlled internal drug release insert containing progesterone from 42 to 49 DIM. Cows assigned to the short voluntary waiting period (SVWP) treatment were inseminated if observed in estrus after the second injection of PGF of the presynchronization protocol, and those not inseminated were submitted to a timed artificial insemination (TAI) protocol (GnRH 62 DIM, PGF 69 DIM, GnRH 71 DIM, and TAI 72 DIM), whereas cows assigned to the long voluntary waiting period (LVWP) were all submitted to the TAI protocol and were TAI at 72 DIM. Plasma progesterone was determined at 35, 49, and 62 DIM for evaluation of interval from parturition to resumption of cyclicity. Pregnancy was diagnosed weekly at 32 and 60 d after first AI and at 42 d after subsequent inseminations. Percentage of SVWP cows inseminated in estrus was 58.9% and the interval from parturition to first AI was shorter for SVWP cows (64.7 ± 0.4 vs. 74.2 ± 0.5 DIM). Cows cyclic by 49 and 62 DIM were more likely to be inseminated in estrus than those anovular by 62 DIM (67.9, 61.0, and 32.8%, respectively) and cyclic cows by 49 and 62 DIM had shorter interval from parturition to first AI than anovular cows (62.6 ± 0.7, 63.1 ± 1.2, and 70.1 ± 1.1 DIM). Treatment did not affect pregnancy per AI after first postpartum AI or the rate at which cows became pregnant. Cows that resumed cyclicity by 49 DIM had greater pregnancy per AI than cows still anovular by 62 DIM and became pregnant at a faster rate than cows that resumed cyclicity by 62 DIM and those still anovular by 62 DIM. Inseminating cows that displayed estrus after the presynchronization protocol did not affect reproductive performance compared with submission of 100% of cows to a TAI protocol.  相似文献   

8.
The objectives were to (1) compare blood metabolites and reproductive outcomes in lactating dairy cows not inseminated before (early) and after (late) 100 d in milk (DIM) because of prolonged anovulation or anestrus; and (2) evaluate reproductive responses of cows ≤100 DIM to GnRH + PGF treatments after a fixed-time artificial insemination (AI; Ovsynch) or after induced estrus (Select Synch). In blood samples collected before initiating hormone-based breeding programs, anovular cows ≤100 DIM had the greatest serum total protein and globulin concentrations and the lowest tri-iodothyronine concentrations. Anovular and ovular cows >100 DIM had the greatest serum urea concentrations. Ovaries in cows (n = 40) >100 DIM were examined by transrectal ultrasonography, and those without a detectable corpus luteum (CL; anovular) were given GnRH and then PGF 7 d later (Select Synch), whereas cows with a CL (ovular) were given 2 PGF injections 12 d apart. Cows were inseminated at observed estrus after the second or only PGF injection. More ovular (79%; 15/19) than anovular cows (24%; 5/21) were detected in estrus. No differences were detected between ovular and anovular cows in DIM at first AI, conception rate to first AI, cumulative pregnancy rates, number of services per conception, or days open. Cows (n = 93) ≤100 DIM were assigned randomly to 3 treatments: (1) control (n = 20) AI at estrus; (2) GnRH and then PGF on 7 d (Select Synch; n = 42) and monitored for signs of estrus for 5 d and AI accordingly; or (3) 2 GnRH injections 9 d apart with PGF given 48 h before second GnRH injection and AI at 16 h after the second GnRH injection (Ovsynch; n = 31). Among cows ≤100 DIM, controls had more days to first service (149 ± 16 d) than Select Synch cows (117 ± 7 d). Ovsynch cows had the fewest days to first service (84 ± 10 d) compared with control (149 ± 16 d) and Select Synch (117 ± 7 d) cows. Conception rates in control (25%) and Select Synch (26.2%) cows did not differ from those in Ovsynch cows (29%). Ovsynch cows had greater cumulative pregnancy rates and fewer days open than control (161 ± 20 vs. 258 ± 29 d), but did not differ from Select Synch (233 ± 19 d). Timed AI produced comparable fertility and superior cumulative pregnancy rates, fewer days to first service, and fewer days open than AI at observed estrus in cows inseminated ≤100 DIM.  相似文献   

9.
Our objective was to compare the AI submission rate and pregnancies per artificial insemination (P/AI) at first service of lactating Holstein cows submitted to a Double-Ovsynch protocol and timed artificial insemination (TAI) versus artificial insemination (AI) to a detected estrus after synchronization of estrus at a similar day in milk range. Lactating Holstein cows were randomly assigned to receive their first TAI after a Double-Ovsynch protocol (DO; n = 294) or to receive their first AI after a synchronized estrus (EST; n = 284). Pregnancy status was determined 33 ± 3 d after insemination and was reconfirmed 63 ± 3 d after insemination. Data were analyzed by ANOVA and logistic regression using the MIXED and GLIMMIX procedures of SAS (SAS Institute Inc., Cary, NC). By design, days in milk at first insemination did not differ between treatments (76.9 ± 0.2 vs. 76.7 ± 0.3 for DO vs. EST cows, respectively), but more DO cows were inseminated within 7 d after the end of the voluntary waiting period than EST cows (100.0 vs. 77.5%). Overall, DO cows had more P/AI than EST cows at both 33 d (49.0 vs. 38.6%) and 63 d (44.6 vs. 36.4%) after insemination, but pregnancy loss from 33 to 63 d after insemination did not differ between treatments. Primiparous cows had more P/AI than multiparous cows 33 and 63 d after insemination, but the treatment by parity interaction was not significant. Synchronization rate to the hormonal protocols was 85.3%, which did not differ between treatments; however, synchronized DO cows had more P/AI 33 d after insemination than synchronized EST cows (54.7 vs. 44.5%). In summary, submission of lactating Holstein cows to a Double-Ovsynch protocol and TAI for first insemination increased the percentage of cows inseminated within 7 d after the end of the voluntary waiting period and increased P/AI at 33 and 63 d after first insemination resulting in 64 and 58% more pregnant cows, respectively, than submission of cows for first AI after detection of estrus at a similar day in milk range. We conclude that, because the proportion of synchronized cows did not differ between treatments, DO cows had more P/AI than EST cows because of an intrinsic increase in fertility after submission to a fertility program.  相似文献   

10.
Our objective was to evaluate time to pregnancy after the first service postpartum and pregnancy per artificial insemination (P/AI) in dairy cows managed with 2 resynchronization of ovulation programs. After first service, lactating Holstein cows were blocked by parity (primiparous vs. multiparous) and randomly assigned to the d 32 Resynch (R32; n = 1,010) or short Resynch (SR; n = 1,000) treatments. Nonpregnancy diagnosis (NPD) was conducted 32 ± 3 d after AI by transrectal ultrasonography. Nonpregnant cows in R32 received the Ovsynch protocol: GnRH, PGF 7 d later, GnRH 56 h later, and timed AI (TAI) 16 to 18 h later. Cows in SR with a corpus luteum (CL) ≥15 mm and a follicle ≥10 mm at NPD received PGF, PGF 24 h later, GnRH 32 h later, and TAI 16 to 18 h later. Cows in SR without a CL ≥15 mm or a follicle ≥10 mm at NPD received a modified Ovsynch protocol with 2 PGF treatments and progesterone (P4) supplementation (GnRH plus CIDR, PGF and CIDR removal 7 d later, PGF 24 h later, GnRH 32 h later, and TAI 16 to 18 h later). Blood samples were collected from a subgroup of cows at the GnRH before TAI (R32 = 114; SR = 121) to measure P4 concentration. Binomial outcomes were analyzed with logistic regression and hazard of pregnancy (R32 = 485; SR = 462) with Cox's proportional regression in SAS (SAS Institute, Cary, NC). For P/AI analysis, the TAI service was the experimental unit (R32 = 720; SR = 819). Models included treatment and parity as fixed effects and farm as random effect. The hazard of pregnancy was greater for the SR treatment (hazard ratio = 1.18; 95% confidence interval: 1.01–1.37). Median time to pregnancy was 95 and 79 d for the R32 and SR treatments, respectively. At NPD, 71.3 and 71.2% of cows had a CL for the R32 and SR treatments, respectively. Treatment did not affect overall P/AI 32 ± 3 d after AI (R32 = 31.0% vs. SR = 33.9%) or for cows with a CL at NPD (R32 = 32.7% vs. SR = 32.8%). For cows with no CL at NPD, P/AI was greater for the SR treatment (36.9%) than for the R32 treatment (28.6%). Pregnancy loss from 32 to 63 d after AI was similar for all services combined (R32 = 8.3% vs. SR = 10.4%) and for cows with no CL at NPD (R32 = 13.2% vs. SR = 7.2%) but tended to be affected by treatment for cows with a CL at NPD (R32 = 6.8% vs. SR = 11.9%). Treatment affected the proportion of cows with P4 ≤0.5 ng/mL at the GnRH before TAI for all cows (R32 = 68.4% vs. SR = 81.8%), tended to have an effect among cows with a CL (R32 = 70.0% vs. SR = 81.8%), and had no effect for cows with no CL (R32 = 64.7% vs. SR = 81.8%). We concluded that the SR program reduced time to pregnancy because of a reduction of the interbreeding interval for cows with a CL at NPD and greater P/AI in cows with no CL at NPD.  相似文献   

11.
Objectives were to investigate 2 intervals from induction of ovulation to artificial insemination (AI) and the effect of supplemental progesterone for resynchronization on fertility of lactating dairy cows subjected to a 5-d timed AI program. In experiment 1, 1,227 Holstein cows had their estrous cycles presynchronized with 2 injections of PGF at 46 and 60 d in milk (DIM). The timed AI protocols were initiated with GnRH at 72 DIM, followed by 2 injections of PGF at 77 and 78 DIM and a second injection of GnRH at either 56 (OVS56) or 72 h (COS72) after the first PGF of the timed AI protocols. All cows were time-inseminated at 72 h after the first PGF injection. Pregnancy was diagnosed on d 32 and 60 after AI. In experiment 2, 675 nonpregnant Holstein cows had their estrous cycles resynchronized starting at 34 d after the first AI. Cows received the OVS56 with (RCIDR) or without (RCON) supplemental progesterone, as an intravaginal insert, from the first GnRH to the first PGF. Pregnancy diagnoses were performed on d 32 and 60 after AI. During experiment 2, subsets of cows had their ovaries scanned by ultrasonography at the first GnRH, the first PGF, and second GnRH injections of the protocol. Blood was sampled on the day of AI and 7 d later, and concentrations of progesterone were determined in plasma. Cows were considered to have a synchronized ovulation if they had progesterone <1 and >2.26 ng/mL on the day of AI and 7 d later, respectively, and if no ovulation was detected between the first PGF and second GnRH injections during resynchronization. In experiment 1, the proportion of cows detected in estrus at AI was greater for COS72 than OVS56 (40.6 vs. 32.4%). Pregnancy per AI (P/AI) did not differ between OVS56 (46.4%) and COS72 (45.5%). In experiment 2, cows supplemented with progesterone had greater P/AI compared with unsupplemented cows (51.3 vs. 43.1%). Premature ovulation tended to be greater for RCON than RCIDR cows (7.5 vs. 3.6%), although synchronization of the estrous cycle after timed AI was similar between treatments. Timing of induction of ovulation with GnRH relative to insemination did not affect P/AI of dairy cows enrolled in a 5-d timed AI program. Furthermore, during resynchronization starting on d 34 after the first AI, supplementation with progesterone improved P/AI in cows subjected to the 5-d timed AI protocol.  相似文献   

12.
Our objective was to evaluate the effect of a second PGF treatment (25 mg of dinoprost) or a double dose of PGF (50 mg of dinoprost) during a Resynch protocol on luteal regression and pregnancies per artificial insemination (P/AI) in lactating dairy cows. Lactating Holstein cows (n = 1,100) were randomly assigned at a nonpregnancy diagnosis to receive (1) Ovsynch (control: 100 µg of GnRH; 7 d, 25 mg of PGF; 56 h, 100 µg of GnRH), (2) Ovsynch with a second PGF treatment (GPPG: 100 µg of GnRH; 7 d, 25 mg of PGF; 24 h, 25 mg of PGF; 32 h, 100 µg of GnRH), or (3) Ovsynch with a double dose of PGF (GDDP: 100 µg of GnRH; 7 d, 50 mg of PGF; 56 h, 100 µg of GnRH). All cows received timed artificial insemination (TAI) approximately 16 h after the second GnRH treatment (G2). Pregnancy diagnosis was performed by transrectal palpation 39 ± 3 d after TAI, and pregnancy status was reconfirmed 66 d after TAI. Blood samples collected from a subset of cows in each treatment at the first PGF treatment (n = 394) and at G2 (n = 367) were assayed for progesterone (P4). Data were analyzed by logistic regression using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). At 39 d after TAI, GPPG cows tended to have more P/AI than control cows [35% (137/387) vs. 31% (107/349)], whereas P/AI for GDDP cows [32% (118/364)] did not differ from that for control cows. Pregnancy loss from 38 to 66 d did not differ among treatments and was 8% (30/362). The percentage of cows with complete luteal regression (P4 <0.4 ng/mL at G2) tended to differ among treatments and was greater for GPPG cows than for GDDP and control cows (94% vs. 88% vs. 88%, respectively). Overall, cows with P4 <1 ng/mL at the first PGF treatment had fewer P/AI than cows with P4 ≥1 ng/mL (27% vs. 38%), whereas cows with P4 ≥0.4 ng/mL at G2 had fewer P/AI than cows with P4 <0.4 ng/mL (15% vs. 38%). We conclude that adding a second PGF treatment 24 h after the first within a Resynch protocol tended to increase the proportion of cows undergoing complete luteal regression and P/AI, whereas treatment with a double dose of PGF at a single time did not.  相似文献   

13.
Our objective was to compare the effect of treatment with GnRH at the first treatment (G1) of the Breeding-Ovsynch portion of a Double-Ovsynch (DO) protocol with human chorionic gonadotropin (hCG) on pregnancies per artificial insemination (P/AI) in lactating dairy cows. In experiment 1, lactating dairy cows (n = 1,932) submitted to a DO protocol for first timed artificial insemination (TAI) on 2 commercial dairy farms were blocked by parity (primiparous vs. multiparous) and were randomly assigned to receive 100 µg of GnRH versus 2,500 IU of hCG at G1. Overall, P/AI 39 d after TAI for cows inseminated with sexed dairy semen was greater for cows treated with GnRH than for cows treated with hCG within each parity (primiparous: 42.6% vs. 38.2%; multiparous: 39.4% vs. 30.3%). Similarly, P/AI 39 d after TAI for multiparous cows inseminated with conventional beef semen tended to be greater for cows treated with GnRH than for cows treated with hCG (41.1% vs. 34.3%). In experiment 2, lactating Holstein cows (n = 43) were blocked by parity and were randomly assigned to the treatment protocols described for experiment 1. Ovaries were evaluated with transrectal ultrasonography immediately before treatment and 24, 28, 32, 36, and 40 h after treatment to assess time from treatment to ovulation, and blood samples were collected immediately before G1, at the first PGF treatment, 8 and 16 h later, at the second PGF treatment, 8 and 16 h later, at the second GnRH (G2) treatment, and at TAI to compare luteolysis based on serum progesterone (P4) concentrations. Although mean (± standard error of the mean) time from treatment to ovulation was approximately 2 h greater for cows treated with hCG than for cows treated with GnRH (33.7 ± 0.6 vs. 31.5 ± 0.6 h), P4 concentrations during luteolysis and the proportion of cows with complete luteolysis (P4 <0.4 ng/mL at G2) did not differ between treatments. We conclude that replacing 100 µg of GnRH with 2,500 IU of hCG at G1 of a DO protocol decreased fertility to TAI in lactating dairy cows but did not affect the rate or completeness of luteolysis despite the increased interval from treatment to ovulation.  相似文献   

14.
The objective of this retrospective observational cohort study, combined with simulation, was to evaluate the effect of extending the voluntary waiting period (VWP) during the summer on profitability on a Florida dairy farm. Data from Holstein cows (n = 1,416) that calved between June and September of 2007 and 2008 were used. Cows that calved between June 1 and July 21 (regular group; REG; n = 719) were artificially inseminated (AI) for the first time upon estrus detection (ED) after the second PGF of the Presynch protocol administered between 57 and 63 d in milk (DIM), or underwent timed AI using the Ovsynch protocol (TAI) if not detected in estrus. Cows that calved between July 22 and September 18 (extended group; EXT; n = 697) underwent AI for the first time after the first or second PGF starting November 14 or November 21 or underwent TAI if not detected in estrus. For second and subsequent AI, all cows underwent AI upon ED or enrolled on TAI after nonpregnancy diagnosis. Following these schemes, average VWP in the REG group and EXT group were 60 and 83 d, respectively. Overall profitability for both experimental and subsequent parities were calculated by subtracting the costs existing of feeding costs ($0.30/kg lactating cow diet; $0.25/kg dry cow diet), breeding costs ($2.65/dose PGF; $2.40/dose GnRH; $0.25/injection administration; $10/semen straw; $5/AI; $3/pregnancy diagnosis), and other costs ($3/d) from the daily revenues with milk sales ($0.44/kg of milk), cow sales ($1.76/kg of live weight), and calf sales ($140/calf). A herd budget simulation was used to predict future cash flow after culling or end of subsequent parity until 6 yr after the start of the study to account for all cash flow consequences of extended VWP. Cows in the EXT group had greater first-service pregnancy per AI (PAI1) but still had greater days open and calving interval. Delaying breeding did not affect total cash flow because the EXT group had greater combined profitability for the experimental parity and subsequent parity but lesser future cash flow. Delayed breeding during the summer increased PAI1 but did not improve overall reproductive efficiency and did not affect overall profitability.  相似文献   

15.
Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d ?11, PGF on d ?4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF) on d ?2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d ?11, 1 CIDR withdrawn + PGF on d ?4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF on d ?2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d ?11 or d ?4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A greater proportion of cows (30.2%) had a CL at PGF in the GnRH treatment [74.1% (570/763)] than in the 2CIDR treatment [56.9% (434/763)]; however, circulating P4 concentration was greater at the time of PGF treatment (d ?4) for cows 2CIDR (4.26 ± 0.13 ng/mL) than in cows in GnRH (3.99 ± 0.14 ng/mL). Thus, these 2 protocols yield similar fertility results that might be due to somewhat different physiological alterations. Treatment with GnRH increased the proportion of cows with a CL at PGF; however, the 2CIDR protocol increased circulating P4 under all circumstances.  相似文献   

16.
Pregnancy per artificial insemination (P/AI) following Ovsynch is optimized when cows ovulate to the first GnRH of Ovsynch. Fertility programs are designed to presynchronize cows to d 6 or 7 of the estrous cycle to increase the chances of ovulation of a first-wave dominant follicle to the first GnRH of Ovsynch. The hypothesis of this experiment was that simplification of a presynchronization program through the combination of PGF and GnRH on the same day, 7 d before Ovsynch, would allow for similar P/AI compared with Presynch-10. Lactating dairy cows (n = 432) 41 to 47 d in milk (DIM) were randomly assigned to 2 treatments within parities for first service. Control cows received Presynch-10/Ovsynch consisting of the following: PGF–14 d–PGF–10 d–GnRH–7 d–PGF–56 h–GnRH–16 h–AI. Treated cows received PGF and GnRH–7 d–GnRH–7 d–PGF–56 h–GnRH–16 h–AI. All cows received a supplemental injection of PGF 24 h after the PGF of Ovsynch to enhance complete luteolysis. All cows received timed AI between 75 and 81 DIM. Blood was collected to assess circulating concentrations of progesterone (P4), and the number and size of corpora lutea (CL) were recorded using ultrasonography on day of PGF of Ovsynch. The administration of PGF simultaneously with GnRH and 7 d before Ovsynch (PG+G) had similar P/AI at 28 (46 vs. 48%), 35 (43 vs. 43%), 49 (39 vs. 39%), and 77 d post-AI (38 vs. 39%) compared with Presynch-10. No differences were observed in P/AI in primiparous versus multiparous cows at 28 (52 vs. 45%), 35 (48 vs. 41%), 49 (45 vs. 37%), and 77 d post-AI (43 vs. 36%). No difference existed between treatments in percentage of cows with functional CL at PGF of Ovsynch, total luteal area (mm2), or serum concentrations of P4 at time of PGF of Ovsynch, regardless of parity. Number of CL had a tendency to be greater for multiparous PG+G vs. Presynch-10 cows (2.34 ± 0.09 vs. 2.15 ± 0.08) but not in primiparous cows (1.95 ± 0.10 vs. 1.98 ± 0.11). In summary, administering both PGF and GnRH on the same day, 7 d before the start of Ovsynch, appears to be a simple and effective alternative to Presynch-10 Ovsynch.  相似文献   

17.
Our objective was to compare the insemination dynamics and time to pregnancy for up to 100 d after the beginning of the artificial insemination period (AIP) for heifers managed with first artificial insemination (AI) service programs that relied primarily on insemination at detected estrus (AIE) after PGF treatments, timed artificial insemination (TAI), or a combination of both. Holstein heifers were randomly assigned to receive first AI service with sex-selected semen after 368 ± 10 d of age with (1) AIE after synchronization of estrus with up to 3 PGF treatments every 14 d starting on the first day of the AIP (PGF+AIE; n = 317). Heifers not AIE up to 9 d after the third PGF received a 5-d Cosynch protocol with progesterone supplementation [GnRH + controlled internal drug release insert (CIDR)–5 d–CIDR removal and PGF–3 d–GnRH and TAI] before TAI. Heifers detected in estrus from CIDR removal and PGF until the day before TAI received AIE with no GnRH treatment; (2) 2 PGF treatments 14 d apart with the second treatment at the beginning of the AIP (PGF+TAI; n = 334). Heifers received AIE for up to 9 d after the second PGF treatment. Heifers not AIE received TAI after the 5-d Cosynch protocol and (3) TAI after the 5-d Cosynch protocol (ALL-TAI; n = 315). Heifers failing to conceive to a previous AI received a subsequent AI with conventional semen at detected estrus or TAI after the 5-d Cosynch protocol. Binomial outcomes were analyzed by logistic regression, whereas time to AI and pregnancy were analyzed with Cox's regression. The hazard of first AI up to 45 d of the AIP was greater for ALL-TAI than for PGF+AIE [hazard ratio (HR) = 1.72; 95% confidence interval (CI) =1.45 to 2.03] and PGF+TAI (HR = 1.51; 95% CI = 1.28 to 1.77), but similar for PGF+AIE and PGF+TAI (HR = 1.14; 95% CI = 0.97 to 1.33). A greater proportion of heifers received AIE in PGF+AIE (98.7%) than in PGF+TAI (78.5%). Overall, first service pregnancy per AI did not differ (PGF+AIE = 42.0%; PGF+TAI = 47.3%, ALL-TAI = 43.8%). Time to pregnancy was reduced for ALL-TAI compared with PGF+AIE (HR = 1.20, 95% CI = 1.02 to 1.42), but was similar to that of PGF+TAI (HR = 1.13, 95% CI = 0.96 to 1.33). Time to pregnancy did not differ for PGF+AIE and PGF+TAI (HR = 1.07, 95% CI = 0.91 to 1.25). Median days to pregnancy were 27, 23, and 21 for heifers in PGF+AIE, PGF+TAI, and ALL-TAI, respectively. We concluded that an ALL-TAI program for first service reduced time to pregnancy, albeit a relatively small reduction, when compared with a program that relied primarily on AIE after induction of estrus with PGF treatments. The program that combined synchronization of estrus and TAI (PGF+TAI) resulted in similar time to pregnancy than the predominant TAI and predominant AIE programs.  相似文献   

18.
《Journal of dairy science》2023,106(9):6476-6494
Our objective was to compare reproductive outcomes of primiparous lactating Holstein cows of different genetic merit for fertility submitted for insemination with management programs that prioritized artificial insemination (AI) at detected estrus (AIE) or timed AI (TAI). Moreover, we aimed to determine whether subgroups of cows with different fertility potential would present a distinct response to the reproductive management strategies compared. Lactating primiparous Holstein cows (n = 6 commercial farms) were stratified into high (Hi-Fert), medium (Med-Fert), and low (Lo-Fert) genetic fertility groups (FG) based on a Reproduction Index value calculated from multiple genomic-enhanced predicted transmitting abilities. Within herd and FG, cows were randomly assigned either to a program that prioritized TAI and had an extended voluntary waiting period (P-TAI; n = 1,338) or another that prioritized AIE (P-AIE; n = 1,416) and used TAI for cows, not AIE. Cows in P-TAI received first service by TAI at 84 ± 3 d in milk (DIM) after a Double-Ovsynch protocol, were AIE if detected in estrus after a previous AI, and received TAI after an Ovsynch-56 protocol at 35 ± 3 d after a previous AI if a corpus luteum (CL) was visualized at nonpregnancy diagnosis (NPD) 32 ± 3 d after AI. Cows with no CL visualized at NPD received TAI at 42 ± 3 d after AI after an Ovsynch-56 protocol with progesterone supplementation (P4-Ovsynch). Cows in P-AIE were eligible for AIE after a PGF treatment at 53 ± 3 DIM and after a previous AI. Cows not AIE by 74 ± 3 DIM or by NPD 32 ± 3 d after AI received P4-Ovsynch for TAI at 74 ± 3 DIM or 42 ± 3 d after AI. Binary data were analyzed with logistic regression, count data with Poisson regression, continuous data by ANOVA, and time to event data by Cox's proportional hazard regression. Pregnancy per AI (P/AI) to first service was greater for cows in the Hi-Fert (59.8%) than the Med-Fert (53.6%) and Lo-Fert (47.7%) groups, and for the P-TAI (58.7%) than the P-AIE (48.7%) treatment. Overall, P/AI for all second and subsequent AI combined did not differ by treatment (P-TAI = 45.2%; P-AIE = 44.5%) or FG (Hi-Fert = 46.1%; Med-Fert = 46.0%; Lo-Fert = 42.4%). The hazard of pregnancy after calving was greater for the P-AIE than the P-TAI treatment [hazard ratio (HR) = 1.27, 95% CI: 1.17 to 1.37)], and for the Hi-Fert than the Med-Fert (HR = 1.16, 95% CI: 1.05 to 1.28) and Lo-Fert (HR = 1.34, 95% CI: 1.20 to 1.49) groups. More cows in the Hi-Fert (91.2%) than the Med-Fert (88.4%) and Lo-Fert (85.8%) groups were pregnant at 200 DIM. Within FG, the hazard of pregnancy was greater for the P-AIE than the P-TAI treatment for the Hi-Fert (HR = 1.41, 95% CI: 1.22 to 1.64) and Med-Fert (HR = 1.28, 95% CI: 1.12 to 1.46) groups but not for the Lo-Fert group (HR = 1.13, 95% CI: 0.98 to 1.31). We conclude that primiparous Holstein cows of superior genetic merit for fertility had better reproductive performance than cows of inferior genetic merit for fertility, regardless of the type of reproductive management used. In addition, the effect of programs that prioritized AIE or TAI on reproductive performance for cows of superior or inferior genetic merit for fertility depended on the outcomes evaluated. Thus, programs that prioritize AIE or TAI could be used to affect certain outcomes of reproductive performance or management.  相似文献   

19.
《Journal of dairy science》2021,104(12):12953-12967
Our objective was to evaluate reproductive management programs for submission of Holstein heifers for first insemination with conventional or sexed semen. In experiment 1, nulliparous Holstein heifers (n = 462) were submitted to a 5-d progesterone-releasing intravaginal device (PRID)-Synch protocol [d 0, GnRH + PRID; d 5, PGF − PRID; d 6, PGF; d 8, GnRH + TAI] and were randomly assigned for PRID removal on d 5 or 6 of the protocol followed by timed artificial insemination (TAI) with conventional semen. Delaying PRID removal decreased early expression of estrus before scheduled TAI (0.9 vs. 12.2%), and pregnancies per AI (P/AI) did not differ between treatments. In experiment 2, nulliparous Holstein heifers (n = 736) from 3 commercial farms were randomized within farm to 1 of 3 treatments for first AI with sexed semen: (1) CIDR5 [d −6, GnRH + controlled internal drug release (CIDR); d −1, PGF − CIDR; d 0, PGF; d 2, GnRH + TAI]; (2) CIDR6 (d −6, GnRH + CIDR; d −1, PGF; d 0, PGF − CIDR; d 2, GnRH + TAI); and (3) EDAI (PGF on d 0 followed by once-daily estrous detection and AI). Delaying CIDR removal decreased early expression of estrus before scheduled TAI (0.004 vs. 27.8%); however, CIDR5 heifers tended to have more P/AI at 35 (53 vs. 45 vs. 46%) and 64 (52 vs. 45 vs. 45%) days after AI than CIDR6 and EDAI heifers, respectively. Overall, CIDR5 and CIDR6 heifers had fewer days to first AI and pregnancy than EDAI heifers which resulted in less feed costs than EDAI heifers due to fewer days on feed until pregnancy. Despite greater hormonal treatment costs for CIDR5 heifers, costs per pregnancy were $16.66 less for CIDR5 than for EDAI heifers. In conclusion, delaying PRID removal by 24 h within a 5-d PRID-Synch protocol in experiment 1 suppressed early expression of estrus before TAI, and P/AI for heifers inseminated with conventional semen did not differ between treatments. By contrast, although delaying CIDR removal by 24 h within a 5-CIDR-Synch protocol in experiment 2 suppressed early expression of estrus before TAI, delaying CIDR removal by 24 h tended to decrease P/AI for heifers inseminated with sexed semen. Further, submission of heifers to a 5-d CIDR-Synch protocol for first AI tended to increase P/AI and decrease the cost per pregnancy compared with EDAI heifers.  相似文献   

20.
Objectives were to determine the effect of reducing the period of follicle dominance in a timed artificial insemination (AI) protocol on pregnancy per AI (P/AI) in Holstein cows. In experiment 1, 165 cows received 2 injections of PGF at 36 and 50 d in milk (DIM). At 61 DIM, cows were assigned randomly to Cosynch 72 h (CoS72: d 61 GnRH, d 68 PGF, d 71 GnRH) or to a 5-d Cosynch 72 h with 1 (5dCoS1: d 61 GnRH, d 66 PGF, d 69 GnRH) or 2 injections of PGF (5dCoS2: d 61 GnRH, d 66 and 67 PGF, d 69 GnRH). Blood was sampled at the first GnRH, first PGF, and at the second GnRH of the protocols and assayed for progesterone. Ovulatory responses to GnRH were evaluated by ultrasonography. Cows were considered synchronized if they had concentrations of progesterone ≥1 ng/mL and <1 ng/mL on the days of the PGF, and the second GnRH of the protocols, respectively, and if they ovulated within 48 h of the second GnRH injection. In experiment 2, 933 cows were assigned randomly to CoS72 or 5dCoS2. Blood was assayed for progesterone and ovaries were scanned as in experiment 1. Plasma on the days of the first PGF and final GnRH of the timed AI protocols was assayed for estradiol in 75 cows. Pregnancy was diagnosed on d 38 and 66 after AI. In experiment 1, the proportions of cows with corpora lutea (CL) regression on the day of AI differed and were 79.0, 59.1, and 95.7% for CoS72, 5dCoS1, and 5dCoS2, respectively. Cows that ovulated to the first GnRH of the Cosynch tended to have lesser CL regression than cows that did not ovulate (73.0 vs. 86.4%). Protocol synchronization differed between treatments and they were greater for CoS72 (69.4%) and 5dCoS2 (78.4%) than for 5dCoS1 (42.3%). In experiment 2, CL regression was lesser (91.5 vs. 96.3%) but detection of estrus at timed AI (30.9 vs. 23.6%) was greater for CoS72 than 5dCoS2, and cows in estrus had increased P/AI (46.2 vs. 31.9%). Cows in CoS72 ovulated a larger follicle and had greater concentrations of estradiol on the day of AI than cows in 5dCoS2, but protocol synchronization tended to increase in cows receiving the 5dCoS2. When all 933 cows were evaluated, P/AI was greater for 5dCoS2 than for CoS72 (37.9 vs. 30.9%). Similarly, when only cows with progesterone <1 ng/mL on the day of AI were evaluated, P/AI was greater for 5dCoS2 than for CoS72 (39.3 vs. 33.9%). Treatment with PGF on d 5 and 6 after GnRH resulted in increased luteolysis and allowed for reducing the interval from GnRH to timed AI, which increased P/AI. Reducing time of follicle dominance in timed AI protocols improves fertility of lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号