首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了器件端头两种不同的金属化层(Ag-Pd和Ni/Ag-Pd)对Sn-Sb钎料表面粘装焊点的形状、微结构及剪切强度的影响,并与常用的Sn-Pb-Ag钎料焊点进行了比较,结果表明:Sn-Sb/Ag-Pd焊点由于Sn-Sb钎料与Ag-Pd/陶瓷界面;Sn-Sb/Ni/Ag-Pd焊点中Ni有效地阻止了Ag-Pd在钎料中的溶解,焊点形状理想,强度很高;而对于Sn-Pb-Ag钎料、器件金属化层对焊点形状和强度影响不大,剪切测试后,断裂发生在钎料内部。  相似文献   

2.
Nano-sized, nonreacting, noncoarsening ZrO2 particle-reinforced Sn-Ag-Cu composite solders were prepared by mechanically dispersing ZrO2 nano-particles into Sn-Ag-Cu solder and the interfacial morphology between the solder and organic solderability preservative (OSP)-Cu pads were characterized metallographically. At their interfaces, island-shaped Cu6Sn5 and Cu3Sn intermetallic compound (IMC) layers were found in solder joints with and without the ZrO2 particles and the IMC layer thickness was substantially increased with reaction time and temperature. In the solder ball region, needle-shaped Ag3Sn and spherically-shaped Cu6Sn5 IMC particles were found to be uniformly distributed in the β-Sn matrix. However, after the addition of ZrO2 nano-particles, Ag3Sn and Cu6Sn5 IMC particles appeared with a fine microstructure and retarded the growth rate of the IMC layers at their interfaces. From a kinetic analysis, the calculated activation energies for the total (Cu6Sn5 + Cu3Sn) IMC layers for Sn-Ag-Cu and Sn-Ag-Cu-1 wt% ZrO2 composite solder joints on OSP-Cu pads were about 53.2 and 59.5 kJ/mol, respectively. In addition, solder joints containing ZrO2 nano-particles displayed higher hardness due to the uniform distribution of ZrO2 nano-particles as well as the refined IMC particles. The hardness values of the plain Sn-Ag-Cu solder joint and solder joints containing 1 wt% of ZrO2 nano-particles after 5 min reaction at 250 °C were about 15.0 Hv and 17.1 Hv, respectively. On the other hand, their hardness values after 30 min reaction were about 13.7 Hv and 15.5 Hv, respectively.  相似文献   

3.
Interfacial reactions between high-Pb solders (Pb-10Sn, Pb-5Sn, and Pb-3Sn, in wt.%) and immersion Ag layer at 350 °C are investigated. Upon decreasing the Sn concentration from 10 wt.% to 5 wt.%, the reaction product formed at the solder/Ag interface changes from the Ag3Sn phase to the Ag4Sn phase. When the Sn concentration reduces to only 3 wt.%, the reaction product is the Ag4Sn phase at the initial stage of reaction but transforms to the (Ag) phase dissolved with Sn at the later stage of reaction. Pb penetrates across the (Ag) phase via grain boundary and forms a continuous Pb-rich layer between the (Ag) phase and the bottom Cu layer. The correlation between the phase transformation and the solder composition is discussed based on the calculated Sn-Pb-Ag isothermal section.  相似文献   

4.
This study investigated the effects of adding 0.5 wt.% nano-TiO2 particles into Sn3.5Ag0.5Cu (SAC) lead-free solder alloys on the growth of intermetallic compounds (IMC) with Cu substrates during solid-state isothermal aging at temperatures of 100, 125, 150, and 175 °C for up to 7 days. The results indicate that the morphology of the Cu6Sn5 phase transformed from scallop-type to layer-type in both SAC solder/Cu joints and Sn3.5Ag0.5Cu-0.5 wt.% TiO2 (SAC) composite solder/Cu joints. In the SAC solder/Cu joints, a few coarse Ag3Sn particles were embedded in the Cu6Sn5 surface and grew with prolonged aging time. However, in the SAC composite solder/Cu aging, a great number of nano-Ag3Sn particles were absorbed in the Cu6Sn5 surface. The morphology of adsorption of nano-Ag3Sn particles changed dramatically from adsorption-type to moss-type, and the size of the particles increased.The apparent activation energies for the growth of overall IMC layers were calculated as 42.48 kJ/mol for SAC solder and 60.31 kJ/mol for SAC composite solder. The reduced diffusion coefficient was confirmed for the SAC composite solder/Cu joints.  相似文献   

5.
Intermetallic compound (IMC) formations of Sn–2.8Ag–0.5Cu solder with additional 1 wt% Bi were studied for Cu-substrate during soldering at 255 °C and isothermal aging at 150 °C. It was found that addition of 1 wt% Bi into the Sn–2.8Ag–0.5Cu solder inhibits the excessive formation of intermetallic compounds during the soldering reaction and thereafter in aging condition. Though the intermetallic compound layer was Cu6Sn5, after 14 days of aging a thin Cu3Sn layer was also observed for both solders. A significant increase of intermetallic layer thickness was observed for both solders where the increasing tendency was lower for Bi-containing solder. After various days of aging, Sn–2.8Ag–0.5Cu–1.0Bi solder gives comparatively planar intermetallic layer at the solder–substrate interface than that of the Sn–2.8Ag–0.5Cu solder. The formation of intermetallic compounds during aging for both solders follows the diffusion control mechanism and the diffusion of Cu is more pronounced for Sn–2.8Ag–0.5Cu solder. Intermetallic growth rate constants for Sn–2.8Ag–0.5Cu and Sn–2.8Ag–0.5Cu–1.0Bi solders were calculated as 2.21 × 10−17 and 1.91 × 10−17 m2/s, respectively, which had significant effect on the growth behavior of intermetallic compounds during aging.  相似文献   

6.
The effect of adding 0.5-1.5 wt.% Zn to Sn-3.8Ag-0.7Cu (SAC) solder alloy during reflow and solid state ageing has been investigated. In particular, the role of the Zn addition in suppressing interfacial Intermetallic Compound (IMC) growth on Cu and Ni-P substrates has been determined. Solder-substrate couples were aged at 150 °C and 185 °C for 1000 h. In the case of 0.5-1.0 wt.% Zn on Cu substrate, Cu3Sn IMC was significantly suppressed and the morphology of Cu6Sn5 grains was changed, leading to suppressed Cu6Sn5 growth. In the SAC-1.5Zn/Cu substrate system a Cu5Zn8 IMC layer nucleated at the interface followed by massive spalling of the layer into the solder, forming a barrier layer limiting Cu6Sn5 growth. On Ni-P substrates the (Cu,Ni)6Sn5 IMC growth rate was suppressed, the lowest growth rate being found in the SAC-1.5Zn/Ni-P system. In all cases the added Zn segregated to the interfacial IMCs so that Cu6Sn5 became (Cu,Zn)6Sn5 and (Cu,Ni)6Sn5 became (Ni,Cu,Zn)6Sn5. The effect of Zn concentration on undercooling, wetting angles and IMC composition changes during ageing are also tabulated, and a method of incorporating Zn into the solder during reflow without compromising solder paste reflow described.  相似文献   

7.
Sn-4.0Ag-0.5Cu (SAC) and Sn-4.0Ag-0.5Cu-0.05Ni-0.01Ge (SACNG) lead-free solders reacting with the Au/Ni/Cu multi-layer substrate were investigated in this study. All reaction couples were reflowed at 240 and 255 °C for a few minutes and then aged at 150 °C for 100-500 h. The (Cu, Ni, Au)6Sn5 phase was formed by reflowing for 3 min at the interface. If the reflowing time was increased to 10 min, both (Cu, Ni, Au)6Sn5 and (Ni, Cu, Au)3Sn4 phases formed at the interface. The AuSn4 phase was found in the solder for all reaction couples. An addition of Ni and Ge to the solder does not significantly affect the IMC formation. After a long period of heat-treatment, the thickness of the (Cu, Ni, Au)6Sn5 and (Ni, Cu, Au)3Sn4 phases increased and the intermetallic compounds (IMCs) growth mechanism obeyed the parabolic law and the IMC growth mechanism was diffusion-controlled. The mechanical strengths for both the soldered joints decreased with increasing thermal aging time. The SACNG/Au/Ni/Cu couple had better mechanical strength than that in the SAC/Au/Ni/Cu couple.  相似文献   

8.
The growth kinetics of intermetallic compound layers formed between Sn-3.5Ag solder and Cu substrate were investigated as a consequence of solid-state isothermal aging. Isothermal aging was carried out in a temperature range between 70°C and 200°C for 0 to 60 days. A quantitative analysis of the intermetallic compound layer thickness as a function of time and temperature was performed. The diffusion couples showed a composite intermetallic layer comprised of Cu6Sn5 and Cu3Sn. The growth of intermetallic compounds followed diffusion-controlled kinetics and the layer thickness reached only 9 μm after 60 day of aging at 150°C. The apparent activation energies were calculated for the growth of the total intermetallic compound (Cu6Sn5+Cu3Sn); Cu6Sn5 and Cu3Sn intermetallic are 65.4, 55.4 and 75.7 kJ/mol, respectively.  相似文献   

9.
The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 °C for 5 s. The joints were subsequently aged at temperatures of 130-170 °C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu3Sn and Cu6Sn5. Cu6Sn5 is formed during soldering. Cu3Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu3Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu6(Sn,In)5 instead of Cu6Sn5, with a higher rate constant. The mechanism of the Cu6(Sn,In)5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.  相似文献   

10.
The growth of the intermetallic layers at the interface of Ti-Ni diffusion couples was investigated under the co-effect of heat and direct current. Isothermal diffusion treatments for Ti-Ni couples were conducted at 500, 600 and 700 °C for 5, 10 and 15 h with and without the passage of DC current of 10 A intensity. It was found that both Ti2Ni and TiNi3 layer form at the Ti-Ni interface in all couples treated by different process, but TiNi layer forms in the couples annealed above 600 °C without current or at 500 °C with current. The growth of the whole interfacial layer shows a parabolic relationship with time. The apparent activation energy of growth for the whole interfacial layer is 83.76 kJ/mol in the couple treated by heating without a current, and it decreases to 42.11 kJ/mol in the couple treated with a direct current of 10 A during heating. The effect of the current on the growth of different intermetallic layers varies with its direction.  相似文献   

11.
Sn whisker growth in Sn-9Zn-0.5Ga-0.7Pr lead-free solder   总被引:1,自引:0,他引:1  
The spontaneous growth of Sn whisker in Sn-Zn series solder is newly reported in this work. It is found that during the exposure of Sn-9Zn-0.5Ga-0.7Pr bulk solder to ambient conditions for a few hours, many different lengths of needle-like Sn whiskers originate spontaneously from the Sn-Pr intermetallic compounds of the solder and grow rapidly at a rate of about 3.5 Å/s. It is proposed that the driving force for whisker formation is the compressive stress resulting from the oxidation of Sn-Pr compounds, and that the free Sn atoms released from oxidation reaction feed the whisker growth during exposure.  相似文献   

12.
The effect on the growth kinetics of the intermetallic compounds (IMCs) in solder/Cu joints, caused by adding Bi to eutectic Sn-3.5Ag solder alloy, was examined at the aging temperatures of 150°C and 180°C. The Cu6Sn5 layer growth was significantly enhanced, but the Cu3Sn layer growth was slightly retarded by the addition of Bi, resulting in significant growth enhancement of the total (Cu6Sn5+Cu3Sn) IMC layer with increasing Bi addition. The IMC layer growth in the Bi-containing solder joints was accompanied by the accumulation of Bi ahead of the Cu6Sn5 layer that resulted in the formation of a liquid layer at the Cu6Sn5/solder interface. A kinetic model was developed for the planar growth of the Cu6Sn5 and Cu3Sn layers in the solder joints, accounting for the existence of interfacial reaction barriers. Predictions from the kinetic model showed that the experimental results could be well explained by the hypothesis that the formation of a Bi-rich liquid layer at the Cu6Sn5/solder interface reduces the interfacial reaction barrier at the interface.  相似文献   

13.
Electromigration (EM) has become one of the reliability concerns to the electronic solder joint due to its increasing capacity to bear the high current density (104 A/cm2). Although the failure induced by EM can trigger a large void across the entire cathode interface, no effective solutions are presented throughout years of effort on this problem. Here, the composite solder joints are addressed to demonstrate their potential roles on solving the EM issue in the eutectic SnBi solder joints. Micro-sized Ni particles were selected to intentionally add into the solder matrix due to their extensive application as a barrier layer in the under-bump-metallization (UBM) of flip chip solder joints. The ultimate results illustrated that the Ni particles can react with Sn to form the cluster-type Sn-Ni intermetallic compounds (IMCs) inside the solder matrix after the first reflow. Accordingly, the phase segregation of Sn and Bi was significantly inhibited during the current stressing, demonstrating the Sn-Ni IMCs can act as the obstacles to obstruct the movement of dominant diffusion entity (Bi atoms/ions) along the phase boundaries.  相似文献   

14.
唐宇  潘英才  李国元 《焊接学报》2014,35(1):95-100
研究了纳米锑掺杂对回流焊过程中Sn-3.0Ag-0.5Cu-xSb(x=0,0.2%,1.0%和2.0%)焊点界面金属间化合物(IMC)生长动力学的影响.借助扫描电镜(SEM)观察了焊点的微观结构,利用X射线能谱分析(EDX)及X射线衍射谱仪(XRD)确定了IMC的相和成分.结果表明,部分纳米锑颗粒溶解在富锡相中形成SnSb二元相,部分纳米锑颗粒溶解在Ag3Sn相中形成Ag3Sb相,剩余部分沉降在界面Cu6Sn5金属间化合物层表面.随着纳米锑含量的增加,IMC厚度减小.当纳米锑的含量为1.0%时,IMC厚度最小.通过曲线拟合,确定出界面IMC层生长指数和扩散系数.结果表明,IMC层生长指数和扩散系数均随着纳米锑含量的增加而减小.当纳米锑的含量为1.0%,IMC层生长指数和扩散系数均有最小值,分别为0.326和10.31×10-10 cm2/s.由热力学相图和吸附理论可知,Sn,Sb元素之间易形成SnSb化合物,引起Sn元素的活性、Cu-Sn金属间化合物形成的驱动力和界面自由能下降,从而导致Cu6Sn5金属间化合物生长速率下降,抑制IMC生长.  相似文献   

15.
采用扫描电镜(SEM)研究在150 ℃等温时效下Cu/Sn5Sb1Cu0.1Ni0.1Ag/Cu与Ni/Sn5Sb1Cu0.1Ni0.1Ag/Ni焊点的界面扩散行为. 结果表明,在时效过程中,随着时效时间的增加,Cu/Sn5Sb1Cu0.1Ni0.1Ag/Cu焊点界面金属间化合物(intermetallic compound,IMC)形貌由开始的细针状生长为棒状,IMC层厚度增加,界面IMC主要成分为(Cu,Ni)6Sn5. Ni/Sn5Sb1Cu0.1Ni0.1Ag/Ni焊点的界面IMC形貌由细小突起状转变为较为密集颗粒状,且IMC层厚度增加,界面IMC主要成分为(Cu,Ni)3Sn4. 经过线性拟合,两种焊点的界面IMC层生长厚度与时效时间t1/2呈线性关系,Sn5Sb1Cu0.1Ni0.1Ag/Cu界面间IMC的生长速率为7.39 × 10?2 μm2/h,Sn5Sb1Cu0.1Ni0.1Ag/Ni界面间IMC的生长速率为2.06 × 10?2 μm2/h. 镀镍层的加入可以显著改变界面IMC的形貌,也可降低界面IMC的生长速率,抑制界面IMC的生长,显著提高抗时效性能.  相似文献   

16.
In this paper, the microstructural evolution of IMCs in Sn–3.5Ag–X (X = 0, 0.75Ni, 1.0Zn, 1.5In)/Cu solder joints and their growth mechanisms during liquid aging were investigated by microstructural observations and phase analysis. The results show that two-phase (Ni3Sn4 and Cu6Sn) IMC layers formed in Sn–3.5Ag–0.75Ni/Cu solder joints during their initial liquid aging stage (in the first 8 min). While after a long period of liquid aging, due to the phase transformation of the IMC layer (from Ni3Sn4 and Cu6Sn phases to a (Cu, Ni)6Sn5 phase), the rate of growth of the IMC layer in Sn–3.5Ag–0.75Ni/Cu solder joints decreased. The two Cu6Sn5 and Cu5Zn8 phases formed in Sn–3.5Ag–1.0Zn/Cu solder joints during the initial liquid aging stage and the rate of growth of the IMC layers is close to that of the IMC layer in Sn–3.5Ag/Cu solder joints. However, the phase transformation of the two phases into a Cu–Zn–Sn phase speeded up the growth of the IMC layer. The addition of In to Sn–3.5Ag solder alloy resulted in Cu6(Snx,In1?x)5 phase which speeded up the growth of the IMC layer in Sn–3.5Ag–1.5In/Cu solder joint.  相似文献   

17.
J. Shen  Y.C. Chan  S.Y. Liu 《Acta Materialia》2009,57(17):5196-5206
The chemical interfacial reaction of Ni plates with eutectic Sn–3.5Ag lead-free solder was studied by microstructural observations and mathematical calculations. Compared with the Sn–3.5Ag–0.75Ni/Ni interfacial reaction, based on a simple model of the growth of the liquid/solid chemical compound layer, the growth mechanism of Ni3Sn4 in the Sn–3.5Ag/Ni interfacial reaction is discussed and presented. The growth process of Ni3Sn4 in the Sn/Ni liquid/solid reaction interface involves the net effect of several interrelated phenomena, such as volume diffusion, grain boundary diffusion, grain boundary grooving, grain coarsening, and dissolution into the molten solder. The growth time exponent n and morphology of Ni3Sn4 were found to be dependent on these factors.  相似文献   

18.
The intermetallic compounds (IMC) in the solder and at the interface of Sn-3.0Ag-0.5Cu (SAC)/Cu and Sn-3.0Ag-0.3Cu-0.05Cr (SACC)/Cu joints were investigated after isothermal aging at 150 °C for 0, 168 and 500 h. Different shaped Ag3Sn phases were found near the IMC layer of the latter joint. Interestingly, fine rod-shaped and branch-like Ag3Sn were detected near the interface after soldering and long Ag3Sn changed into shorter rods and small particles during aging. It is investigated that the Cr addition and thermal aging have effect on the evolution of Ag3Sn morphologies and it is controlled by interfacial diffusion. Energy minimization theory and the redistribution of elements are used to explain the morphological evolution of Ag3Sn. Small Ag3Sn particles were also found on the IMC layer after aging, unlike the large Ag3Sn at that of SAC/Cu joints. In conclusion, a favorable morphology of the joint interface leads to better bonding properties for SACC/Cu joints against thermal aging than that for SAC/Cu.  相似文献   

19.
汤文明  HE  An-qiang  LIU  Qi  D.  G  IVEY 《中国有色金属学会会刊》2010,20(1):90-96
Cu/Sn couples, prepared by sequentially electroplating Cu and Sn layers on metallized Si wafers, were employed to study the microstructures, phases and the growth kinetics of Cu-Sn intermediate phases, when electroplated Cu/Sn couples were aged at room temperature or annealed at temperatures from 373 K to 498 K for various time. Only Cu6Sn5 formed in aged couples or couples annealed at temperature below 398 K. The Cu6Sn5 layer was continuous, but not uniform, with protrusions extending into the Sn matrix. When Cu/Sn couples were annealed at temperatures from 423 K to 498 K, two continuous and uniform Cn6Sn5/Cu3Sn layers formed within the reaction region between Sn and Cu. There were many voids near the Cu3Sn/Cu interface and within the Cu3Sn layer. Cu6Sn5 and Cu3Sn formations both follow parabolic growth kinetics with activation energies of 41.4 kJ/mol for Cu6Sn5 and 90.4 kJ/mol for Cu3Sn, respectively.  相似文献   

20.
In this paper, effect of soldering time and temperature on formation of intermetallic compounds developed between Sn-0.3Ag-0.7Cu lead-free solder and copper substrate was investigated. Dip soldering was performed at 250, 270, and 290 °C with soldering time of 5, 10, 15, and 20 s. Either ?-Cu3Sn or η-Cu6Sn5 intermetallic phase was found at the interface between the solder and the substrate depending on the soldering condition, i.e., soldering time and soldering temperature. ?-Cu3Sn was found only when the substrate was soldered at 250 °C for 5 and 10 s. At other soldering conditions, only η-Cu6Sn5 was found at the interfacial zone. Crystal structure of ?-Cu3Sn intermetallic phase was orthorhombic, and it was hexagonal structure for η-Cu6Sn5. Transformation of the intermetallic phases was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号