首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
颗粒增强钛基复合材料研究进展   总被引:5,自引:0,他引:5  
综述了颗粒增强钛基复合材料的研究现状,从增强体、基体合金选择,材料制备方法,机械性能,应用童话土产中方面,详细阐述了颗粒增强钛基复合材料的特点,并指出了今后颗粒基复合材料的研究方向。  相似文献   

2.
侯舒兰  陈静瑜 《硅谷》2010,(13):29-29
系统介绍了钛基复合材料的最新研究和发展,涉及非连接颗粒增强和连续纤维增强两大类钛基复合材料。  相似文献   

3.
颗粒增强体的加入不仅使钛基复合材料(TMCs)具有复杂相组成,还改变了材料在制备与加工过程中的特性.针对颗粒增强TMCs,对其组织结构和制备方法进行简要介绍,总结了组织与性能的影响因素,包含增强体对疲劳性能的影响,疲劳断面表征分析,加工工艺、制备工艺尤其是新兴的激光增材制造对颗粒增强TMCs组织性能的影响.颗粒增强体的强化机制有应力承载作用、固溶强化、细晶强化、弥散强化等.颗粒增强TMCs的疲劳强度高于普通钛合金,断裂机制通常为解理断裂,高温下转变为准解理断裂.制备工艺与加工工艺对颗粒增强TMCs的组织性能影响显著,合理设置激光增材制造工艺参数能够制备力学性能优异、耐磨与抗腐蚀性能良好的颗粒增强TMCs.  相似文献   

4.
本文对自生反应法合成碳化钛颗粒增强Ti-6Al4V基复合材料的制备过程进行了研究,设计了两种反应途径,并成功地制备出该类复合材料.碳化钛颗粒的体积百分含量可以通过处理温度、时间等工艺参数来控制,碳化钛的显微硬度达到2050~2300 kg/mm2左右.特别是,通过这一化学反应处理,钛基体中的氯含量被明显地降低.最后,测定了该类复合材料的硬度和拉伸性能,结果表明,其性能随碳化钛颗粒体积分数的增加而升高,特别其高温特性尤为明显.  相似文献   

5.
原位反应制备的颗粒增强钛基复合材料中增强颗粒与基体的相容性好,复合材料高温性能稳定,成为制备高性能颗粒增强钛基复合材料的首选途径.目前,粉末冶金法、熔铸法、放热弥散法、燃烧合成法和机械合金化法都已用于原位反应制备颗粒增强钛基复合材料.综述了这些制备方法的原理、特点以及制备出的复合材料的组织和性能,指出了原位反应制备颗粒增强钛基复合材料今后的发展方向.  相似文献   

6.
颗粒增强钛基复合材料具有高比强度、低密度、高弹性模量等特点,成为钛基复合材料的发展趋势.目前日本的Toyota公司采用粉末冶金技术制备了原位反应生成的TiB颗粒增强钛基复合材料,已在汽车发动机进、排气阀等部件得到应用.美国Dynamet公司开发了颗粒增强钛基复合材料CermeTi系列,利用其好的耐磨性能在军事、汽车、体育、医疗器械方面进行了开发.我国西北有色金属研究院研制出了性能优异的TP-650钛基复合材料,并且上海交通大学等亦在原位反应法方面作出了较好的结果.  相似文献   

7.
石英玻璃基复合材料的研究进展   总被引:19,自引:0,他引:19  
石英玻璃基复合材料属于重要国防材料,在导弹通讯、制导和防热上具有不可取代的地位。本工作介绍了几种形式的石英玻璃基复合材料的组织结构、性能和制备工艺的研究与应用情况。同时提出了石英玻璃基复合材料研究中存在的问题。  相似文献   

8.
由于具有低密度和优异的室温、高温性能,钛基复合材料在航空航天、汽车等领域已被广泛应用。本研究综述了非连续型钛基复合材料常用制备方法、热加工工艺以及主要性能,并总结了目前钛基复合材料制备存在的主要问题和解决方法,最后展望了钛基复合材料的研究和应用发展方向。  相似文献   

9.
高技术与钛基复合材料《美国金属市场报》尖端材料记者指出,在经过几年的研究与开发之后,先进的复合材料巳经在航天飞行器和飞机制造工业中开始取代金属;在今后3年里,复合材料的需求量将逐渐增长。他说,因为复合材料的强度高、重量轻和弹性模量大(见表),它将在上述高技术领域中与金属激烈而又广泛地争夺市场;根据弗里多尼亚集团公司最近关于复合材料和先进纤维的研究,复合材料的航天与航空工业市场将从1987年的765.66×10~4kg增加到1992年的1583×10~4kg。美国通用电气公司斯克内克塔迪研究中心的一位科学家宣称,他们正在开发用连续碳化硅纤维增强的钛基合金复合材料,并将用于飞机制造中(发动机构件、机身外壳等)和航天飞机中(换热器器等)。该公司还  相似文献   

10.
钛基复合材料相对于钛合金具有更高的硬度、强度和耐磨性,可以进一步扩大钛合金在航空航天、海洋、医疗等领域的应用范围.现阶段钛基复合材料的制备方法可以分为两大类:第一,传统方法(例如熔炼和铸造).该方法存在着能耗大、成本高的问题.第二,激光选区熔化技术.该技术具有加工时间短、成形精度高、不需要制备模具的优点,但在加工过程中还存在着容易球化、开裂、降低成形件塑性等缺点.本文综述了当前国内外钛基复合材料的研究进展,包括增强体以及工艺参数调控对显微组织、成形质量及性能的影响,并结合现阶段研究现状对后续发展方向进行一定的讨论和展望.  相似文献   

11.
针对SiC纤维增强Ti基复合材料的界面反应问题,综述了国内外涂层法界面改性的研究现状,主要包括各种单涂层法、双涂层或复合涂层法及其对复合材料界面和力学性能的影响,指出了其存在的问题或不足,并预测了今后的发展趋势。  相似文献   

12.
采用反应自生法制备了 Ti C颗粒增强钛合金基复合材料 ,并通过 XRD,SEM对复合材料的相组成和微观组织进行了研究。结果表明 :在 Ti- 6Al- 1 .8C中主要存在 Ti和 Ti C两种相。Ti C以树枝状初生 Ti C和短棒状共晶 Ti C两种形态存在。对 Ti C晶格常数的计算结果表明 ,Ti C的衍射峰存在一定的偏移 ,主要是由于 Ti C中存在 C空位。研究了 C含量对材料组织和 Ti C形貌的影响。结果表明 :C含量对基体组织基本没有影响 ,但是随着 C含量由 1 .98%减少到 0 .39% ,粗大的树枝状 Ti C逐渐消失 ,Ti C以短棒状为主 ,部分呈羽毛状。  相似文献   

13.
针对连续SiC纤维增强钛基复合材料(SiC_f/Ti)成形的技术难题,利用沿垂直纤维方向基体具有大变形的能力,可以采用超塑成形/扩散连接技术(SPF/DB)成形出复合材料空心构件。在不同工艺参数条件下,测试了SiC_f/Ti复合材料的横向高温变形规律,并分析了变形温度、应变速率、纤维含量等工艺参数的影响规律,对不同参数条件下拉伸试件的微观组织和断口形貌进行了对比,分析了复合材料的高温变形机制。  相似文献   

14.
采用真空自耗电极电弧熔炼制成钕氧化物颗粒增强钛基复合材料.分析了不同Nd含量的钕氧化物颗粒增强钛基复合材料的组织.测试了复合材料棒材的拉伸、热稳定性、持久和蠕变等力学性能.结果表明,Nd元素的加入能够明显地细化铸锭的低倍组织和β热处理棒材的显微组织.随着加入的Nd含量增加,钕氧化物颗粒尺寸增大,其体积分数也明显增多.Nd元素的加入对复合材料的力学性能有利,尤其是高温性能.  相似文献   

15.
碳纤维增强铜基复合材料的最新研究进展和应用   总被引:3,自引:2,他引:1  
碳纤维增强铜基复合材料是一种极具发展前途的金属基复合材料。介绍了碳纤维增强铜基复合材料的制备工艺,总结概述了目前短碳纤维增强铜基复合材料的物理力学性能研究进展及其在航空航天、汽车、电子方面的应用现状和前景。探讨分析了碳纤维增强铜基复合材料的研究开发趋向,对碳纤维增强铜基复合材料的研究开发和实际应用具有一定的指导意义。  相似文献   

16.
SiC纤维增强钛基复合材料界面研究及构件研制   总被引:1,自引:0,他引:1  
首先介绍了作者近年来在SiC纤维增强钛基复合材料界面反应机理、应力分布和界面调控方面的工作进展,然后介绍了作者在磁控溅射法和箔-纤维-箔法复合材料工艺及构件研制方面的研究工作。  相似文献   

17.
与传统单一的材料相比,增强金属基复合材料(MMCs)的力学、物理和机械加工性能具有许多优点和更加优异的性能,在各种工程领域中应用广泛。首先从制备工艺开始,介绍了目前发展较为迅速的冷喷涂技术、激光熔覆、等离子堆焊及电弧堆焊等工艺发展。在此基础上着重论述了微米WC颗粒添加及纳米WC颗粒添加金属基耐磨材料性能的研究,论述了提高微米WC颗粒增强金属基复合耐磨材料耐磨性的途径,通过增加基体组织韧性,增加WC颗粒包裹、支撑,减少裂纹产生。进而介绍了纳米WC颗粒改变凝固形式,细化复合材料晶粒从而提高性能,并指出了纳米WC颗粒烧损是制约其发展的重要原因。最后,对该方向研究进展进行了总结,并对其发展前景和主要发展方向进行了展望。  相似文献   

18.
高推重比航空发动机用新型高温钛合金研究进展   总被引:3,自引:0,他引:3  
综述了我国航空发动机用高温钛合金材料体系的发展状况。针对未来高推重比航空发动机对新型轻质耐高温结构材料的需求,重点介绍了TiAl合金和SiC纤维增强钛基复合材料2种关键的新型高温钛合金国外研究进展和应用情况。目前我国航空发动机主要应用的是α+β型钛合金,工作温度均在500℃以下,在更高温度使用的近α型钛合金(如600℃高温钛合金)尚处于研发阶段。国外对TiAl合金的研究已近20年,在航空发动机领域已公开报导了10多种TiAl零部件,并且完成了地面装机试验,试验结果非常理想。SiCf/Ti复合材料在航空发动机上的典型应用是叶环类和轴类零件,美、英等国均研制出了多个零部件,并进行了发动机考核试验。TiAl和SiCf/Ti复合材料将是新一代高推重比航空发动机用的2种关键结构材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号