共查询到20条相似文献,搜索用时 10 毫秒
1.
High‐efficiency all‐solid‐state dye‐sensitized nanocrystalline solar cells have been fabricated using a poly(ethylene oxide)/poly(vinylidene fluoride) (PEO/PVDF)/TiO2‐nanoparticle polymer redox electrolyte, which yields an overall energy‐conversion efficiency of about 4.8 % under irradiation by white light (65.2 mW cm–2). The introduction of PVDF (which contains the highly electronegative element fluorine) and TiO2 nanoparticles into the PEO electrolyte increases the ionic conductivity (by about two orders of magnitude) and effectively reduces the recombination rate at the interface of the TiO2 and the solid‐state electrolyte, thus enhancing the performance of the solar cell. 相似文献
2.
K.‐S. Chen W.‐H. Liu Y.‐H. Wang C.‐H. Lai P.‐T. Chou G.‐H. Lee K. Chen H.‐Y. Chen Y. Chi F.‐C. Tung 《Advanced functional materials》2007,17(15):2964-2974
A new type of ruthenium complexes 6 – 8 with tridentate bipyridine–pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π‐conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2, and photostability. Structural characterization, photophysical studies, and corresponding theoretical approaches have been made to ensure their fundamental basis. As for dye‐sensitized solar cell applications, it was found that 6 – 8 possess a larger dye uptake of 2.4 × 10–7 mol cm–2, 1.5 × 10–7 mol cm–2, and 1.3 × 10–7 mol cm–2, respectively, on TiO2 than that of the commercial N3 dye (1.1 × 10–7 mol cm–2). Compound 8 works as a highly efficient photosensitizer for the dye‐sensitized nanocrystalline TiO2 solar cell, producing a 5.65 % solar‐light‐to‐electricity conversion efficiency (compare with 6.01 % for N3 in this study), a short‐circuit current density of 15.6 mA cm–2, an open‐circuit photovoltage of 0.64 V, and a fill factor of 0.57 under standard AM 1.5 irradiation (100 mW cm–2). These, in combination with its superior thermal and light‐soaking stability, lead to the conclusion that the concomitant tridentate binding properties offered by the bipyridine‐pyrazolate ligand render a more stable complexation, such that extended life spans of DSSCs may be expected. 相似文献
3.
K. Hara T. Sato R. Katoh A. Furube T. Yoshihara M. Murai M. Kurashige S. Ito A. Shinpo S. Suga H. Arakawa 《Advanced functional materials》2005,15(2):246-252
Novel conjugated organic dyes that have N,N‐dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye‐sensitized nanocrystalline‐TiO2 solar cells (DSSCs). We attained a maximum solar‐energy‐to‐electricity conversion efficiency (η) of 6.8 % under AM 1.5 irradiation (100 mW cm–2) with a DSSC based on 2‐cyano‐7,7‐bis(4‐dimethylamino‐phenyl)hepta‐2,4,6‐trienoic acid (NKX‐2569): short‐circuit photocurrent density (Jsc) = 12.9 mA cm–2, open‐circuit voltage (Voc) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO2 occurred. The experimental and calculated Fourier‐transform infrared (FT‐IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO2 surface with the carboxylate coordination form. A molecular‐orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye. 相似文献
4.
J. H. Wu S. C. Hao Z. Lan J. M. Lin M. L. Huang Y. F. Huang L. Q. Fang S. Yin T. Sato 《Advanced functional materials》2007,17(15):2645-2652
Dye‐sensitized solar cells (DSSCs) are receiving considerable attention as low‐cost alternatives to conventional solar cells. In DSSCs based on liquid electrolytes, a photoelectric efficiency of 11 % has been achieved, but potential problems in sealing the cells and the low long‐term stability of these systems have impeded their practical use. Here, we present a thermoplastic gel electrolyte (TPGE) as an alternative to the liquid electrolytes used in DSSCs. The TPGE exhibits a thermoplastic character, high conductivity, long‐term stability, and can be prepared by a simple and convenient protocol. The viscosity, conductivity, and phase state of the TPGE can be controlled by tuning the composition. Using 40 wt % poly(ethylene glycol) (PEG) as the polymeric host, 60 wt % propylene carbonate (PC) as the solvent, and 0.65 M KI and 0.065 M I2 as the ionic conductors, a TPGE with a conductivity of 2.61 mS cm–2 is prepared. Based on this TPGE, a DSSC is fabricated with an overall light‐to‐electrical‐energy conversion efficiency of 7.22 % under 100 mW cm–2 irradiation. The present findings should accelerate the widespread use of DSSCs. 相似文献
5.
Two new ruthenium complexes [Ru(dcbpy)(L)(NCS)2], where dcbpy is 4,4′‐dicarboxylic acid‐2,2′‐bipyridine and L is 3,8‐bis(4‐octylthiophen‐2‐yl)‐1,10‐phenanthroline (CYC‐P1) or 3,8‐bis(4‐octyl‐5‐(4‐octylthiophen‐2‐yl)thiophen‐2‐yl)‐1,10‐phenanthroline (CYC‐P2), are synthesized, characterized by physicochemical and semiempirical computational methods, and used as photosensitizers in nanocrystalline dye‐sensitized solar cells. It was found that the difference in light‐harvesting ability between CYC‐P1 and CYC‐P2 is associated mainly with the location of the frontier orbitals, in particular the highest occupied molecular orbital (HOMO). Increasing the conjugation length of the ancillary ligand decreases the energy of the metal‐to‐ligand charge transfer (MLCT) transition, but at the same time reduces the molar absorption coefficient, owing to the HOMO located partially on the ancillary ligand of the ruthenium complex. The incident photon‐to‐current conversion efficiency curves of the devices are consistent with the MLCT band of the complexes. Therefore, the overall efficiencies of CYC‐P1 and CYC‐P2 sensitized cells are 6.01 and 3.42 %, respectively, compared to a cis‐di(thiocyanato)‐bis(2,2′‐bipyridyl)‐4,4′‐dicarboxylate ruthenium(II)‐sensitized device, which is 7.70 % using the same device‐fabrication process and measuring parameters. 相似文献
6.
J.E. Kroeze N. Hirata L. Schmidt‐Mende C. Orizu S.D. Ogier K. Carr M. Grtzel J.R. Durrant 《Advanced functional materials》2006,16(14):1832-1838
Solid‐state dye‐sensitized solar cells employing a solid organic hole‐transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid‐electrolyte junction devices. Of particular importance to the design of such devices is the control of interfacial charge transfer. In this paper, the factors that determine the yield of hole transfer at the dye/HTM interface and its correlation with solid‐state‐cell performance are identified. To this end, a series of novel triarylamine type oligomers, varying in molecular weight and mobility, are studied. Transient absorption spectroscopy is used to determine hole‐transfer yields and pore‐penetration characteristics. No correlation between hole mobility and cell performance is observed. However, it is found that the photocurrent is directly proportional to the hole‐transfer yield. This hole‐transfer yield depends on the extent of pore penetration in the dye‐sensitized film as well as on the thermodynamic driving force ΔGdye–HTM for interfacial charge transfer. Future design of alternative solid‐state HTMs should focus on the optimization of pore‐filling properties and the control of interfacial energetics rather than on increasing material hole mobilities. 相似文献
7.
D. Kuang C. Klein S. Ito J.‐E. Moser R. Humphry‐Baker S. M. Zakeeruddin M. Grätzel 《Advanced functional materials》2007,17(1):154-160
Ru(4,4‐dicarboxylic acid‐2,2′‐bipyridine) (4,4′‐bis(2‐(4‐(1,4,7,10‐tetraoxyundecyl)phenyl)ethenyl)‐2,2′‐bipyridine) (NCS)2, a new high molar extinction coefficient ion‐coordinating ruthenium sensitizer was synthesized and characterized using 1H NMR, Fourier transform IR (FTIR), and UV/vis spectroscopies and cyclic voltammetry. Using this sensitizer in combination with a nonvolatile organic‐solvent‐based electrolyte, we obtain a photovoltaic efficiency of 8.4 % under standard global AM 1.5 sunlight. These devices exhibit excellent stability when subjected to continuous thermal stress at 80 °C or light soaking at 60 °C for 1000 h. An electrochemical impedance spectroscopy study revealed that device stability is maintained by stabilizing the TiO2/dye/electrolyte and Pt/electrolyte interface during the aging process. The influence of Li+ present in the electrolyte on the device photovoltaic parameters was studied, and the FTIR spectral and photovoltage transient study showed that Li+ coordinates to the triethyleneoxide methylether side chains on the K60 sensitizer molecules. 相似文献
8.
Eun Sik Kwak Wonmok Lee Nam‐Gyu Park Junkyung Kim Hyunjung Lee 《Advanced functional materials》2009,19(7):1093-1099
Compact inverse‐opal structures are constructed using non‐aggregated TiO2 nanoparticles in a three‐dimensional colloidal array template as the photoelectrode of a dye‐sensitized solar cell. Organic‐layer‐coated titania nanoparticles show an enhanced infiltration and a compact packing within the 3D array. Subsequent thermal decomposition to remove the organic template followed by impregnation with N‐719 dye results in excellent inverse‐opal photoelectrodes with a photo‐conversion efficiency as high as 3.47% under air mass 1.5 illumination. This colloidal‐template approach using non‐aggregated nanoparticles provides a simple and versatile way to produce efficient inverse‐opal structures with the ability to control parameters such as cavity diameter and film thickness. 相似文献
9.
Henry J. Snaith 《Advanced functional materials》2010,20(1):13-19
For an ideal solar cell, a maximum solar‐to‐electrical power conversion efficiency of just over 30% is achievable by harvesting UV to near IR photons up to 1.1 eV. Dye‐sensitized solar cells (DSCs) are, however, not ideal. Here, the electrical and optical losses in the dye‐sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open‐circuit voltage generated by the solar cell are specifically highlighted. In the first instance, the maximum power conversion efficiency attainable as a function of optical bandgap of the sensitizer and the “loss‐in‐potential” from the optical bandgap to the open‐circuit voltage is estimated. For the best performing DSCs with current technology, the loss‐in‐potential is ~0.75 eV, which leads to a maximum power‐conversion efficiency of 13.4% with an optical bandgap of 1.48 eV (840 nm absorption onset). Means by which the loss‐in‐potential could be reduced to 0.4 eV are discussed; a maximum efficiency of 20.25% with an optical bandgap of 1.31 eV (940 nm) is possible if this is achieved. 相似文献
10.
Yong Man Lee Young Hun Kim Jun Haeng Lee Jong Hyeok Park Nam‐Gyu Park Woo‐Seok Choe Min Jae Ko Pil J. Yoo 《Advanced functional materials》2011,21(6):1160-1167
A novel means of generating highly interconnected and nano‐channeled photoelectrodes by employing one‐dimensionally shaped M13 viruses as a sacrificial template is proposed for highly efficient dye‐sensitized solar cells (DSSCs). The electrostatic binding between oppositely charged TiO2 nanoparticles and M13 viruses provides a uniform complexation and suppresses random aggregation of TiO2 nanoparticles. After the calcination process, the traces of viruses leave porously interconnected channel structures inside TiO2 nanoparticles, providing efficient paths for electrolyte contact as well as increased surface sites for dye adsorption. As a result, DSSCs generated using a sacrificial virus template exhibit an enhanced current density (JSC) of 12.35 mA cm‐2 and a high photoconversion efficiency (η) of 6.32%, greater than those of conventional photoelectrodes made of TiO2 nanoparticles (JSC of 8.91 mA cm‐2 and η of 4.67%). In addition, the stiffness and shape of the M13 virus can be varied, emphasizing the usefulness of the one‐dimensional structural characteristics of M13 viruses for the highly interconnected porous structure of DSSC photoelectrodes. 相似文献
11.
Mingxing Wu Mengyao Sun Huawei Zhou Jing‐Yuan Ma Tingli Ma 《Advanced functional materials》2020,30(7)
Developing highly effective and stable counter electrode (CE) materials to replace rare and expensive noble metals for dye‐sensitized and perovskite solar cells (DSC and PSC) is a research hotspot. Carbon materials are identified as the most qualified noble metal‐free CEs for the commercialization of the two photovoltaic devices due to their merits of low cost, excellent activity, and superior stability. Herein, carbonaceous CE materials are reviewed extensively with respect to the two devices. For DSC, a classified discussion according to the morphology is presented because electrode properties are closely related to the specific porosity or nanostructure of carbon materials. The pivotal factors influencing the catalytic behavior of carbon CEs are also discussed. For PSC, an overview of the new carbon CE materials is addressed comprehensively. Moreover, the modification techniques to improve the interfacial contact between the perovskite and carbon layers, aiming to enhance the photovoltaic performance, are also demonstrated. Finally, the development directions, main challenges, and coping approaches with respect to the carbon CE in DSC and PSC are stated. 相似文献
12.
Lei Wang Hai‐Yu Wang Hong‐Hua Fang Hai Wang Zhi‐Yong Yang Bing‐Rong Gao Qi‐Dai Chen Wei Han Hong‐Bo Sun 《Advanced functional materials》2012,22(13):2783-2791
Initial nanointerfacial electron transfer dynamics are studied in dye‐sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot‐sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal‐free organic dye‐sensitized photovoltaic devices by molecular engineering. 相似文献
13.
14.
Honeycomb‐Like Organized TiO2 Photoanodes with Dual Pores for Solid‐State Dye‐Sensitized Solar Cells
Sung Hoon Ahn Won Seok Chi Dong Jun Kim Sung Yeon Heo Jong Hak Kim 《Advanced functional materials》2013,23(31):3901-3908
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis. 相似文献
15.
Qifeng Zhang Tammy P. Chou Bryan Russo Samson A. Jenekhe Guozhong Cao 《Advanced functional materials》2008,18(11):1654-1660
ZnO films consisting of either polydisperse or monodisperse aggregates of nanocrystallites were fabricated and studied as dye‐sensitized solar‐cell electrodes. The results revealed that the overall energy‐conversion efficiency of the cells could be significantly affected by either the average size or the size distribution of the ZnO aggregates. The highest overall energy‐conversion efficiency of ~4.4% was achieved with the film formed by polydisperse ZnO aggregates with a broad size distribution from 120 to 360 nm in diameter. Light scattering by the submicrometer‐sized ZnO aggregates was employed to explain the improved solar‐cell performance through extending the distance travelled by light so as to increase the light‐harvesting efficiency of photoelectrode film. The broad distribution of aggregate size provides the ZnO films with both better packing and an enhanced ability to scatter the incident light, and thus promotes the solar‐cell performance. 相似文献
16.
High Efficiency Solid‐State Dye‐Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree‐like TiO2 Nanotubes 下载免费PDF全文
Dong Kyu Roh Won Seok Chi Harim Jeon Sang Jin Kim Jong Hak Kim 《Advanced functional materials》2014,24(3):379-386
A facile and effective method to prepare hierarchical pine tree‐like TiO2 nanotube (PTT) arrays with an anatase phase directly grown on a transparent conducting oxide substrate via a one‐step hydrothermal reaction. The PTT arrays consist of a vertically oriented long nanotube (NT) stem and a large number of short nanorod (NR) branches. Various PTT morphologies are obtained by adjusting the water/diethylene glycol ratio. The diameter of the NTs and the size of the NR branches decreases from 300 to100 nm and from 430 to 230 nm, respectively, with increasing water content. The length of the PTT arrays could be increased up to 19 μm to significantly improve the charge transport and specific surface area. The solid‐state dye‐sensitized solar cells (ssDSSC) assembled with the 19 μm long PTT arrays exhibit an outstanding energy‐conversion efficiency of 8.0% at 100 mW/cm2, which is two‐fold higher than that of commercially available paste (4.0%) and one of the highest values obtained for N719 dye‐based ssDSSCs. The high performance is attributed to the larger surface area, improved electron transport, and reduced electrolyte/electrode interfacial resistance, resulting from the one‐dimensional, well‐aligned structure with a high porosity and large pores. 相似文献
17.
Multi‐Shell Porous TiO2 Hollow Nanoparticles for Enhanced Light Harvesting in Dye‐sensitized Solar Cells 下载免费PDF全文
An optimized configuration for nanomaterials in working electrodes is vital to the high performance of dye‐sensitized solar cells (DSSCs). Here, a fabrication method is introduced for multi‐shell TiO2 hollow nanoparticles (MS‐TiO2‐HNPs) via a sol–gel reaction, calcination, and an etching process. The prepared uniform MS‐HNPs have a high surface area (ca. 171 m2 g?1), multireflection, and facile electrolyte circulation and diffusion. During the MS‐HNP fabrication process, the amount of SiO2 precursor and H2O under reaction has a significant effect on aggregation and side reactions. The etching process to obtain pure TiO2 is influenced by anatase crystallinity. Additionally, single‐shell (SS)‐TiO2‐HNPs and double‐shell (DS)‐TiO2‐HNPs are synthesized as a control. The MS‐TiO2‐HNPs exhibit a high surface area and enhance light reflectance, compared with the SS‐ and DS‐TiO2‐HNPs of the same size. The power conversion efficiency of the optimized MS‐TiO2‐HNP‐based DSSCs is 9.4%, compared with the 8.0% efficiency demonstrated by SS‐TiO2‐HNP‐DSSCs (a 17.5% improvement). These results enable the utilization of multifunctional MS‐HNPs in energy material applications, such as lithium ion batteries, photocatalysts, water‐splitting, and supercapacitors. 相似文献
18.
Giorgio Bazzan James R. Deneault Tae‐Sik Kang Barney E. Taylor Michael F. Durstock 《Advanced functional materials》2011,21(17):3268-3274
A critical component in the development of highly efficient dye‐sensitized solar cells is the interface between the ruthenium bipyridyl complex dye and the surface of the mesoporous titanium dioxide film. In spite of many studies aimed at examining the detailed anchoring mechanism of the dye on the titania surface, there is as yet no commonly accepted understanding. Furthermore, it is generally believed that a single monolayer of strongly attached molecules is required in order to maximize the efficiency of electron injection into the semiconductor. In this study, the amount of adsorbed dye on the mesoporous film is maximised, which in turn increases the light absorption and decreases carrier recombination, resulting in improved device performance. A process that increases the surface concentration of the dye molecules adsorbed on the TiO2 surface by up to 20% is developed. This process is based on partial desorption of the dye after the initial adsorption, followed by readsorption. This desorption/adsorption cycling process can be repeated multiple times and yields a continual increase in dye uptake, up to a saturation limit. The effect on device performance is directly related and a 23% increase in power conversion efficiency is observed. Surface enhanced Raman spectroscopy, infrared spectroscopy, and electrochemical impedance analysis were used to elucidate the fundamental mechanisms behind this observation. 相似文献
19.
Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2
下载免费PDF全文
Sandeep K. Pathak A. Abate P. Ruckdeschel B. Roose Karl C. Gödel Yana Vaynzof Aditya Santhala Shun‐Ichiro Watanabe Derek J. Hollman Nakita Noel Alessandro Sepe Ullrich Wiesner Richard Friend Henry J. Snaith Ullrich Steiner 《Advanced functional materials》2014,24(38):6046-6055
Reversible photo‐induced performance deterioration is observed in mesoporous TiO2‐containing devices in an inert environment. This phenomenon is correlated with the activation of deep trap sites due to astoichiometry of the metal oxide. Interestingly, in air, these defects can be passivated by oxygen adsorption. These results show that the doping of TiO2 with aluminium has a striking impact upon the density of sub‐gap states and enhances the conductivity by orders of magnitude. Dye‐sensitized and perovskite solar cells employing Al‐doped TiO2 have increased device efficiencies and significantly enhanced operational device stability in inert atmospheres. This performance and stability enhancement is attributed to the substitutional incorporation of Al in the anatase lattice, “permanently” passivating electronic trap sites in the bulk and at the surface of the TiO2. 相似文献
20.
Santanu Das P. Sudhagar Ved Verma Donghoon Song Eisuke Ito Sang Yun Lee Yong Soo Kang WonBong Choi 《Advanced functional materials》2011,21(19):3729-3736
The fabrication and functionalization of large‐area graphene and its electrocatalytic properties for iodine reduction in a dye‐sensitized solar cell are reported. The graphene film, grown by thermal chemical vapor deposition, contains three to five layers of monolayer graphene, as confirmed by Raman spectroscopy and high‐resolution transmission electron microscopy. Further, the graphene film is treated with CF4 reactive‐ion plasma and fluorine ions are successfully doped into graphene as confirmed by X‐ray photoelectron spectroscopy and UV‐photoemission spectroscopy. The fluorinated graphene shows no structural deformations compared to the pristine graphene except an increase in surface roughness. Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction increases with increasing plasma treatment time, which is attributed to an increase in catalytic sites. Further, the fluorinated graphene is characterized in use as a counter‐electrode in a full dye‐sensitized solar cell and shows ca. 2.56% photon to electron conversion efficiency with ca. 11 mA cm?2 current density. The shift in work function in F? doped graphene is attributed to the shift in graphene redox potential which results in graphene's electrocatalytic‐activity enhancement. 相似文献