首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The metastable β‐phase morphology, inherent to most polyfluorene homo‐polymers, is of interest due to its superior optical and electrical characteristics compared to its amorphous analogue. Here, a polyfluorene with vinyl‐ether‐functionalized aliphatic side‐chains that allow crosslinking is reported. It is demonstrated that the previously induced conformational morphology is preserved in the resulting polyfluorene network, which enables subsequent wet thin‐film processing. Electron‐beam lithography provides a means for sub‐(optical)‐wavelength patterning of the crosslinkable polyfluorene films. As a specific demonstration, optically‐pumped distributed‐feedback (DFB) lasers made from surface‐relief gratings in amorphous and β‐phase polyfluorene are presented. By backfilling gratings of one morphology by the other, devices are demonstrated that exhibit lasing at two wavelengths with a threshold (<1 μJ cm?2) at least an order of magnitude lower compared with previous data.  相似文献   

2.
In this paper, we describe the synthesis and characterization of poly(9,9′‐dioctylfluorene)–poly(ethylene oxide) (PF‐PEO) block copolymers with different block ratio and molecular architectures (diblock or triblock copolymers). Tapping‐mode atomic force microscopy is used to investigate the relationship between the molecular structure and the microscopic morphology of thin deposits. Copolymers with a low average volume ratio of PEO (fEO from 0.1 to 0.3) exhibit a well‐defined organization into nanoribbons. A model of chain packing is proposed; these structures arise from the interplay of π–π interactions between conjugated PF segments and the interactions of PEO with the mica substrate surface. For copolymers with higher average volume ratio of PEO (fEO > 0.4), the organized structures disappear and lead to untextured aggregates, probably because long‐range, regular π–π stacking of the segments can no longer take place. We also observe that the nature of the solvent from which deposits are grown and the substrate polarity have a strong impact on the microscopic morphology.  相似文献   

3.
The spectral characteristics of polyfluorene (PF)‐based light‐emitting diodes (LEDs) containing a defined low concentration of either keto‐defects or of the polymer poly(9,9‐octylfluorene‐co‐benzothiadiazole) (F8BT) are presented. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green and blue emission components. It is shown that blending hole‐transporting molecules into the emission layer at low concentration or incorporation of a suitable hole‐transporting layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto‐containing PF layer. We conclude that the keto‐defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum‐mechanical calculations.  相似文献   

4.
Modifying metal electrodes with self‐assembled monolayers (SAMs) has promising applications in organic and molecular electronics. The two key electronic parameters are the modification of the electrode work function because of SAM adsorption and the alignment of the SAM conducting states relative to the metal Fermi level. Through a comprehensive density‐functional‐theory study on a series of organic thiols self‐assembled on Au(111), relationships between the electronic structure of the individual molecules (especially the backbone polarizability and its response to donor/acceptor substitutions) and the properties of the corresponding SAMs are described. The molecular backbone is found to significantly impacts the level alignment; for molecules with small ionization potentials, even Fermi‐level pinning is observed. Nevertheless, independent of the backbone, polar head‐group substitutions have no effect on the level alignment. For the work‐function modification, the larger molecular dipole moments achieved when attaching donor/acceptor substituents to more polarizable backbones are largely compensated by increased depolarization in the SAMs. The main impact of the backbone on the work‐function modification thus arises from its influence on the molecular orientation on the surface. This study provides a solid theoretical basis for the fundamental understanding of SAMs and significantly advances the understanding of structure–property relationships needed for the future development of functional organic interfaces.  相似文献   

5.
A molecular nano‐floating gate (NFG) of pentacene‐based transistor memory devices is developed using conjugated polymer nanoparticles (CPN) as the discrete trapping sites embedded in an insulating polymer, poly (methacrylic acid) (PMAA). The nanoparticles of polyfluorene (PF) and poly(fluorene‐alt‐benzo[2,1,3]thiadiazole (PFBT) with average diameters of around 50–70 nm are used as charge‐trapping sites, while hydrophilic PMAA serves as a matrix and a tunneling layer. By inserting PF nanoparticles as the floating gate, the transistor memory device reveals a controllable threshold voltage shift, indicating effectively electron‐trapping by the PF CPN. The electron‐storage capability can be further improved using the PFBT‐based NFG since their lower unoccupied molecular orbital level is beneficial for stabilization of the trapped charges, leading a large memory window (35 V), retention time longer than 104 s with a high ON/OFF ratio of >104. In addition, the memory device performance using conjugated polymer nanoparticle NFG is much higher than that of the corresponding polymer blend thin films of PF/polystyrene. It suggests that the discrete polymer nanoparticles can be effectively covered by the tunneling layer, PMAA, to achieve the superior memory characteristics.  相似文献   

6.
The effect of groups in conjugated molecules on films’ interface morphology, electronic structure, and charge transport behavior is explored utilizing a series of crystalline organic heterostructures that are constructed by four rod‐like molecules and vanadyl phthalocyanine (VOPc). The four rod‐like molecules, which possess the same biphenyl endgroup but different central groups, present similar growth behavior along with different thin film structural parameters and electronic structures. The changes of the structure parameters result in diverse morphology of the VOPc/rod‐like molecule heterostructure because of the different lattice mismatch. The electronic structure differences in rod‐like molecules cause different interface electronic structure of the heterostructure. Under the conjunct effect of morphology and interface electronic structure, the transistors based on the crystalline heterostructures present diverse charge transport behavior and field‐effect mobilities. These results provide a clue for the development of crystalline organic heterostructure engineering and tailoring overall organic device performance through molecular design in local inducing layer.  相似文献   

7.
Scanning force microscopy (SFM) is used to study the surface morphology of spin‐coated thin films of the ion‐transport polymer poly(ethylene oxide) (PEO) blended with either cyclodextrin (CD)‐threaded conjugated polyrotaxanes based on poly(4,4′‐diphenylene‐vinylene) (PDV), β‐CD–PDV, or their uninsulated PDV analogues. Both the polyrotaxanes and their blends with PEO are of interest as active materials in light‐emitting devices. The SFM analysis of the blended films supported on mica and on indium tin oxide (ITO) reveals in both cases a morphology that reflects the substrate topography on the (sub‐)micrometer scale and is characterized by an absence of the surface structure that is usually associated with phase segregation. This observation confirms a good miscibility of the two hydrophilic components, when deposited by using spin‐coating, as suggested by the luminescence data on devices and thin films. Clear evidence of phase segregation is instead found when blending PEO with a new organic‐soluble conjugated polymer such as a silylated poly(fluorene)‐alt‐poly(para‐phenylene) based polyrotaxane (THS–β‐CD–PF–PPP). The results obtained are relevant to the understanding of the factors influencing the interfacial and the intermolecular interactions with a view to optimizing the performance of light‐emitting diodes, and light‐emitting electrochemical cells based on supramolecularly engineered organic polymers.  相似文献   

8.
Here, spontaneous lamellar alignment in a thickness‐modulated block copolymer film is presented as a facile, scalable, and general approach for creating a highly aligned lamellar morphology. Thickness‐modulated block copolymer films are prepared on neutral surfaces by various methods, such as solution dropping, dewetting‐induced self‐organized patterning, and thermal imprinting. Regardless of the film preparation method, the self‐assembled lamellar domains become spontaneously aligned along the thickness gradient after sufficient thermal annealing. Real‐time AFM imaging reveals that spontaneous alignment occurs through the directional growth of well‐ordered domains along the thickness gradient, which is accompanied by defect dynamics, with vertical linear defects moving from thicker parts of the film towards the thinner ones, reducing their length and thus the associated energy. The mechanism underlying this interesting self‐aligning behavior is provided by a ‘geometric anchoring’ phenomenon, originally envisioned to account for the liquid crystal alignment under a non‐flat geometry of confinement. This novel self‐aligning principle offers a valuable opportunity to control nanoscale alignment in block copolymer films by manipulating the, much larger, microscale morphology.  相似文献   

9.
Microfluidics is an ideal tool for the design of self‐assembled micromotors. It allows for easy change of solutions, catalysts, and flow rates, which affect shape, structure, and motion of the resulting micromotors. A microfluidic tool generating aqueous‐two‐phase‐separating droplets of UV‐polymerizable poly(ethylene glycol)diacrylate (PEGDA) and an inert phase, salt, or polysaccharide, is utilized to fabricate asymmetric microbeads. Different molecular weights and branching of polysaccharides are used to study the effect on shape, surface roughness, and motion of the particles. The molecular weight of the polysaccharide determines the roughness of the motors inner surface. Smooth openings are obtained by low molecular weight dextran, while high surface roughness is obtained with a high molecular weight branched polysaccharide. Since roughness plays an important role in bubble pinning, it influences both speed and trajectory. Increasing speeds are obtained with increasing roughness and trajectories ranging from linear, circular to tumble‐and‐run depending on the nature of bubble pinning. This microfluidic tool allows for fine‐tuning shape, structure, and motion by easy change of solutions, catalysts, and flow rates.  相似文献   

10.
Self‐assembly of conjugated organic semiconductors into ordered, larger scale entities is a critical process to achieve efficient charge transport at the nano‐ through macro‐scales, and various methodologies aimed at enhancing molecular ordering have been introduced. However, mechanistic understanding is limited. Here, a mechanistic elucidation of poly(3‐hexylthiophene) (P3HT) molecular self‐assembly is proposed based on experimental demonstration of controlled, solution‐based P3HT self‐assembly into rod‐like polycrystalline nanostructures. The synergistic combination of nonsolvent addition and ultrasonication facilitates rod‐like P3HT nanostructure formation in solution. Importantly, through sequential application of both treatments, nanostructure length can be easily modulated, and the assembly process is shown to follow a simple 2‐step crystallization model, which depends upon nucleation followed by growth. Through arrays of experimental results, the validity of 2‐step crystallization is confirmed and is proposed as a comprehensive platform to understand self‐assembly processes of conjugated polymers into larger, ordered mesoscale entities.  相似文献   

11.
The thermotropic and lyotropic liquid‐crystalline (LC) phases of the ionic self‐assembled complex N,N′,‐bis(2‐(trimethylammonium)ethylene)‐perylene‐3,4,9,10‐tetracarboxyldiimide‐bis(2‐ethylhexyl)sulfosuccinate have been studied using polarizing microscopy, differential scanning calorimetry (DSC), and X‐ray scattering techniques. A two‐dimensional (2D) columnar thermotropic LC phase with π–π stacking of the perylene tectonic units and a lyotropic LC phase in dimethyl sulfoxide (DMSO) have been found. Different techniques have been applied to align both systems and included: surface interactions, electric and magnetic fields, shear force, and controlled domain formation at the LC–isotropic phase‐transition front (PTF). Characterization of the alignment in films has been performed using polarized UV‐vis spectroscopy and transmission null‐ellipsometry. The best results have been obtained for alignment of the material in a lyotropic phase by controlled domain formation at the PTF of the LC–isotropic phase transition. In this case, a dichroic ratio of 18 is achieved with packing of columns of perylenediimide tectons perpendicular to the PTF.  相似文献   

12.
Disordered nanoporous silver (NPAg) thin films fabricated by a thermally assisted dewetting method are employed as a platform to influence chain alignment, morphology, and optical properties of three well‐known conjugated polymers. Grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) measurements show that the porous structure of the metal induces close π–π stacking of poly(3‐hexylthiophene) (P3HT) chains and extended, planar chain conformations of poly(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl) (PFO) and poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,8‐diyl)] (F8BT). A greater degree of vertically‐oriented P3HT chains are found on NPAg compared with planar Ag. However, PFO and F8BT chain alignment is only affected when pore size is large. The optical properties of NPAg films are investigated by transmission and back‐scattering spectroscopies. Strong back‐scattering is observed for all NPAg morphologies, especially for NPAg with small pore sizes. Photoluminescence spectroscopy of conjugated polymer layers on NPAg showed pronounced emission enhancements (up to factors of 26) relative to layers on glass. The enhancements are attributed primarily to: 1) redistribution of conjugated polymer emission by Ag; 2) redirection of emission by polymer‐filled nanopores; and 3) local electromagnetic field effects. This work demonstrates the potential of NPAg‐thin films to influence molecular chain morphology and to improve light‐extraction in organic optoelectronic devices.  相似文献   

13.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

14.
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine).  相似文献   

15.
This work investigates the composition and morphology of films of poly(3‐hexylthiophene) (P3HT), polyfluorene co‐polymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) and blends thereof that are used in efficient all‐polymer solar cells. Ultraviolet photoemission spectroscopy (UPS) and X‐ray photoemission spectroscopy (XPS) studies on thin polymer and blend films on ZnO substrates reveal the existence of a 1–2 nm thick P3HT layer at the top surface of the blend films. XPS depth profiling studies reveal a density wave (λ ≈ 70 nm) originating from the air interface. As no preferential accumulation is observed at the bottom interface with ZnO, the composition at this interface is consistent with the original composition of the blend solution prior to spin‐coating. The morphology of this buried interface was studied by means of atomic force microscopy (AFM) and revealed that upon annealing the average domain size increases slightly (from 27 nm to 40 nm). It is observed that the photovoltaic performance of such inverted hybrid device improves upon annealing, however we believe this to mostly be a result of increased crystallinity in the P3HT domains leading to improved charge transport in the device, rather than changes in the blend phase separation.  相似文献   

16.
Despite the promising expectations of poly(fluorene) (PF)‐type materials as efficient blue‐light‐emitting polymers, the devices based on these materials are not yet fully utilized. Under prolonged operation of the devices, the PF‐type materials undergo degradation with the appearance of a long‐range emission around 2.2–2.3 eV. As a consequence, the emissive color changes from blue to green with a decrease in the device efficiency. Here, an innovative approach that leads to a new blue‐emitting polymer with remarkable color stability is reported. By modifying the chemical structure of PF to inhibit the formation of keto defects, it is demonstrated that the devices exhibit excellent color stability. This new blue‐emitting polymer, poly(2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta‐[def]phenanthrene)) (PCPP), emits a stabilized, efficient blue electroluminescence without exhibiting any peak in the long‐wavelength region even after prolonged operation of the devices in air.  相似文献   

17.
Processing solvent additives in polymer:fullerene bulk heterojunction systems are known as a promising method to enhance photovoltaic performance. It is generally agreed that solvent additives enable polymers to have a high degree of molecular order which increases the device performance. However, the understanding of the efficiency enhancement is not complete. There is a lack of insight regarding the quantitative determination of the molecular miscibility between polymer and fullerene as well as the inner morphology changes induced by the additives. In this work, understanding of the influence of the solvent additive 1,8‐octanedithiol (ODT) is provided on the classic system poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PCBM) films. The impact on polymer crystallinity, surface structure, inner morphology, and quantitative molecular miscibility of P3HT and PCBM is studied as a function of ODT volume concentration. The crystallinity is probed with absorption spectroscopy and grazing incidence wide‐angle X‐ray scattering. The morphology and miscibility are characterized via atomic force microscopy and time‐of‐flight grazing incidence small angle neutron scattering. Besides an increased crystallinity and prominent phase separation, ODT increases the solubility of PCBM in P3HT and reduces the size of amorphous P3HT domains. Moreover, solvent processing with a high ODT concentration alters the vertical material composition of the active layer.  相似文献   

18.
A novel approach for the bottom‐up construction of hybrid organic–inorganic nanocomposites with an intimate arrangement between sp3‐carbon 3D molecular‐size nanodiamonds (diamondoids) and a coated palladium surface as nanolayer is reported. The construction process is conducted stepwisely from the gas phase, using first controlled vapor‐phase self‐assembly of tailor‐made functionalized diamantane derivatives, followed by low‐temperature (45 °C) chemical vapor deposition of an organometallic complex in a reducing H2 atmosphere over the self‐assembled diamondoid scaffold. The use of self‐assemblies of primary diamantane phosphine and phosphine oxide, which are produced with high structural uniformity and reproducibility, yields new hybrid diamondoid‐palladium materials incorporating Pd? O? PH? diamantane bonding motifs. Additional investigations provide evidence for a very challenging issue in the intimate construction of sp3‐C/metal scaffolds. Scanning electron microscopy and transmission electron microscopy microscopies combined with X‐ray photoelectron spectroscopy surface analysis and EDX bulk analysis confirm the formation of diamondoid‐palladium organohybrids with unique surface layering. The vapor phase‐controlled mild synthetic process allows excellent control over nanocomposite formation and morphology from molecular‐level modifications. As such, this bottom‐up composite building process bridges scales from the molecular (functionalized diamondoids) over nanoscopic (self‐assemblies) to microscopic regime (hybrids), in the challenging association of transition metals with an electronically saturated sp3‐carbon organic host material.  相似文献   

19.
Liquid‐crystalline (LC) polyfluorenes have been successfully aligned on photoaddressable polymers (PAPs). This is the first example of the alignment of a LC main chain polymer on a photoaligned layer. The degree of molecular alignment in the fluorescent polyfluorene layer on top of an ultra‐thin PAP layer is shown to depend strongly on the chemical nature of the PAP. Good alignment with dichroic ratios of more than 10 was only achieved with PAPs containing liquid‐crystalline side chains. Patterning with laterally structured alignment was realized in several ways, utilizing reorientation with orthogonally polarized light. Thin PAP layers have further been utilized as hole‐conducting alignment layers in polymer light‐emitting diodes (LEDs) with polarized emission. In order to facilitate hole transport through the alignment layer, different concentrations of a hole‐transporting molecule (HTM) have been mixed into the PAP layer. These hole‐conducting alignment layers retained their aligning abilities even at HTM concentrations of 20 wt.‐%. LEDs with photometric polarization ratios in emission of up to 14 at a brightness of up to 200 cd/m2 and an efficiency of 0.3 cd/A could be realized.  相似文献   

20.
An area of considerable current interest is the development of a practical approach for assembling inorganic nanoparticles into well‐defined arrays because such a technique would offer immense opportunities leading to applications in microimaging, optoelectronics, therapeutics, etc. This paper illustrates a new, simple one‐step process in which proteins act as templates to assemble gold nanoparticles in a shape‐selective fashion. We show, for the first time, that antibodies to vascular endothelial growth factor 165 isoform, 2C3, and epidermal growth factor receptor can act as templates when present in solution during the synthesis of gold nanoparticles. These proteins direct the assembly of the gold nanoparticles into rod‐like shapes when cooled to –20 °C followed by thawing at room temperature. Immunoglobulin G and bovine serum albumin can also direct the assembly process in a similar fashion; however, small molecules, such as poly(L ‐lysine) and lysine, cannot. The formation of a self‐assembled structure in the form of a continuous rod, or the assembly of discrete nanoparticles in a rod‐like fashion, can be tailored by controlling the ratio of the precursor gold salt, HAuCl4, to the antibody/protein used as the template. The nanoconjugates are characterized using UV‐vis spectroscopy, transmission electron microscopy, and infrared spectroscopy. The nano‐bioconjugates obtained via this process may find wide application in areas ranging from optoelectronics and biosensors to therapeutics in neoplastic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号