共查询到20条相似文献,搜索用时 15 毫秒
1.
风力发电是新能源发电中技术之一,对促进电力工业调整、减少环境污染、推进技术进步具有重要意义.然而,目前风力发电的大规模使用还存在一定的难度,开展风电场功率预测的研究势在必行,基于小波理论及神经网络的方法,开展相应的研究. 相似文献
2.
3.
为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。首先,利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风向、历史风功率的不同频率特征信号,并引入改进自适应遗传算法(IAGA)对各序列BP神经网络的初始权值与阈值寻优,使用Sigmiod函数通过适应度值自适应改变交叉概率与变异概率;最后,构建各序列的WT-IAGA-BP模型对短期风功率组合预测。通过仿真分析,并与ELM、WT-ELM及IAGA-BP方法对比,验证该方法具有更高的预测精度和更好的预测性能。 相似文献
4.
介绍了风电功率预测的背景,对风电功率预测进行了理论分析,分析了BP神经网络的原理及基于BP神经网络的风电功率预测流程和预测结果误差的评价指标。以Matlab软件的神经网络工具箱为仿真平台,搭建BP神经网络,进行了功率预测仿真,预测结果均方根误差分别为6.97%、200.59%。两组仿真对比结果表明,基于BP神经网络的风电功率预测在短期预测中是可行的. 相似文献
5.
6.
基于小波-神经网络的风电功率短期预测 总被引:1,自引:0,他引:1
根据风速、风电功率变化特点,有效地预测风电功率,可降低电网调度的难度,利用小波多分辨分析法将风速序列信号分解到不同尺度上以反映不同变化频率的风速信号,分解后的风速信号经多层前向神经网络BP(Back Propagation)预测出其对应的风电功率,通过将基于小波-神经网络模型的预测结果与基于BP神经网络模型的预测结果进行比较研究,发现基于小波-神经网络的预测精度更高,效果更好,且预测精度与预测时间长短有关。 相似文献
7.
风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真,仿真结果表明,单一的BP神经网络预测系统波动性较高,精度不足,而复合型的神经网络算法有效地解决了这一问题,改进后的预测系统精度较高、稳定性较强,满足工业生产需求。 相似文献
8.
由于风电的高度波动性和随机性,大规模的风电功率预测已成为制约中国风电发展的瓶颈。提出一种针对小采样间隔的风电功率数据的多维时间序列BP神经网络预测模型。通过对原始风电功率序列进行处理得到不同时间维度的风电功率均值序列进而组成多维时间序列,采用改进的嵌入维最小预测误差法求取多维时间序列相空间重构时间延迟和嵌入维,利用重构相空间中预测点的近邻点建立BP神经网络预测模型。以实际风电场数据进行验证,证明了该模型可以有效处理风电功率预测问题,算法耗时减少了约9s,同时显著提高预测精度约18.94%。 相似文献
9.
为了提高风电功率预测精度,降低电网调度的难度,通过对影响风电功率预测的诸多因素如风速、风向、风电功率、温度等进行分析,进而对风电功率的预测方法进行研究和探讨,提出了基于多变量的小波-神经网络模型的短期风电功率预测方法。通过单变量和多变量的风电功率预测的比较研究,证明BP神经网络预测与小波-神经网络预测这两种方法的预测精度不同。而且,对于同一种方法,输入变量的多少也对预测精度产生影响。通过最终的比较研究得出,采用基于多变量输入的小波-神经网络开展风电功率预测可提高预测精度。 相似文献
10.
为了提高风电功率的预测精度,针对风机功率不稳定性和非线性强的特点,使用小波包变换将风机出力分解成多个频率的子序列,然后运用组合预测方法分别对各子序列进行提前24 h预测,叠加各子序列的预测值,得出实际预测结果。其中组合预测方法权系数是通过虚拟预测的方法由方差倒数法确定。选择广东某风电场实测数据作为案例,对连续7天风电功率进行了预测。结果表明:小波包变换能有效把握风电功率变化规律,对小波包变换后的各子序列的预测结果表明组合预测效果优于单一预测方法。 相似文献
11.
基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测 总被引:6,自引:1,他引:6
超短期风电功率爬坡事件越来越影响风电机组在电网中的运行。当前国内对爬坡事件的定义并不明确,缺少相应的预测方法。阐述了风电功率爬坡事件的物理含义,提出了一种基于原子稀疏分解和反向传播神经网络(BPNN)的组合预测方法,分别建立了原子分量自预测模型、残差分量预测模型和组合预测模型。以实际风电场数据进行验证,对不同预测方法和不同时间空间实测数据进行了较全面的分析,结果表明该方法可以提高预测精度,并能降低绝对平均误差和均方根误差计算值的统计区间。 相似文献
12.
13.
准确的风力发电功率预测对电网的供需平衡及系统稳定运行有着重要意义。针对风电功率波动性大和随机性问题,提出一种基于提升小波变换(Lifting Wavelet Transform,LWT)的预测模型。首先,将原始风电功率数据通过提升小波算法分解成低频序列和高频序列,从而达到降低信号波动性的目的,再分别对各个子序列构建最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型,并考虑到LSSVM参数的选择极大程度上影响着模型的预测精度,采用改进的种群竞争算法(Improved Population Competitive Algorithm,IPCA)来优化LSSVM参数。通过数据和实际算例验证表明,采用提升小波变换进行分解明显提高了原始信号的稳定性,且相比于LSSVM和PSO-LSSVM模型,所提出的LWT-IPCA-LSSVM模型预测精度明显提高,具有理论指导意义和较好的工程应用前景。 相似文献
14.
15.
16.
17.
18.
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于 Elman神经元网络的短期风电功率预测模型。运用多层 Elman 神经网络模型对西北某风电场实际 1 h 和 24 h 的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层 Elman 神经网络模型预测效果最佳。这表明利用 Elman 回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。 相似文献
19.