首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用Fe_3O_4/Na_2S_2O_8体系催化氧化处理垃圾渗滤液生化尾水,研究了Na_2S_2O_8与Fe_3O_4投加量、pH、反应时间等因素对处理效果的影响。结果表明,在pH=3,m(S_2O_8~(2-))∶12m(COD)=1.2,Fe_3O_4投加量为1.5 g/L,反应时间为24 h的条件下,COD与色度去除率分别为63%和100%。FTIR分析结果表明,Fe_3O_4/Na_2S_2O_8体系的小分子有机物含量比未处理水样小分子有机物含量有所降低。  相似文献   

2.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

3.
为降低出水COD,提高采油废水的可生化性,采用O_3、O_3/H_2O_2组合工艺对某油田采油废水进行处理,考察氧化反应时间、O_3质量浓度、pH、H_2O_2投加量、n(H_2O_2)∶n(O_3)对废水处理效果的影响。结果表明,单独使用O_3处理油田采油废水时,在O_3为20 mg/L、反应时间为60 min、废水pH为8.50条件下,COD去除率为28.5%,B/C由0.08提至0.248;O_3/H_2O_2组合工艺的处理效果更显著,在O_3为30 mg/L、反应时间为60 min、H_2O_2投加量为0.24 g/L、废水pH为8.50的最佳条件下,COD去除率达到55.4%,B/C提升至0.440。氧化处理不仅降低了废水COD,还可提高废水的可生化性,是一种较为有效的预处理技术。  相似文献   

4.
采用磁性活性炭(Cu Fe2O4/AC,MACC)活化S_2O_8~(2-)深度处理焦化废水生化出水,考察了m(Cu Fe2O4)∶m(AC)、MACC投加量、K_2S_2O_8初始质量浓度以及溶液pH对焦化废水生化出水中TOC和色度去除效果的影响,并采用响应面法中的CCD实验设计对反应条件进行优化。结果表明:最佳反应条件为1.5-MACC投加量为5 g/L,K_2S_2O_8初始质量浓度为6 g/L和初始pH为8.3,在此条件下反应360 min后,TOC、色度去除率分别为85.4%、95.2%。响应面分析结果表明,最佳条件下的TOC去除率与模型预测值接近。  相似文献   

5.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

6.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

7.
以FeSO_4为活化剂,采用Na_2S_2O_8/H_2O_2耦合高级氧化体系处理垃圾渗滤液生化尾水。借助响应面法BoxBehnken设计分析Fe SO_4·7H_2O、Na_2S_2O_8、H_2O_2投加量等因素对COD_(Cr)去除率的影响。研究结果显示:Fe~(2+)对COD_(Cr)去除效果影响显著,Na_2S_2O_8与H_2O_2两者之间有显著的交互影响,Na_2S_2O_8/H_2O_2体系产生协同效应,有效提高了COD_(Cr)去除率。在Fe SO_4·7H_2O投加量为2 g/L,Na_2S_2O_8投加量为1.75 g/L,H_2O_2投加量为3 m L/L的条件下,渗滤液尾水COD_(Cr)去除率达到70%以上。  相似文献   

8.
采用负载型TiO_2/ACFs光催化剂在紫外光照射下,处理活性艳红X-3B染料废水,通过试验考察光催化剂对染料废水的处理效果,并对影响负载型TiO_2/ACFs处理染料废水效果的各单因素进行分析和讨论,探讨了染料废水pH值、光照时间、催化剂投加量等因素对染料废水色度和COD去除率的影响。试验结果表明,在pH值为3,催化剂投加量为10 g/L,滴加3%的H_2O_2 1.0 mL,曝气量0.6 m3/h,反应时间为2 h的条件下,活性艳红X-3B染料废水色度去除率可达90%,COD去除率达71%。  相似文献   

9.
采用零价铁(ZVI)活化Na_2S_2O_8-NaClO体系处理垃圾渗滤液生化尾水,考察了pH、催化剂nZVI投加量、氧化剂Na_2S_2O_8投加量、氧化剂NaClO投加量等因素对氧化效果的影响,并利用傅里叶光谱、三维荧光光谱分析技术对水样前后进行分析。结果表明,nZVI活化Na_2S_2O_8-NaClO体系能够有效的去除垃圾渗滤液生化尾水中目标污染物,当催化剂nZVI投加量为0.6g/L、Na_2S_2O_8投加量为2.5g/L、NaClO投加量为30mL/L(有效氯的质量分数10%)、水样初始pH为6时,COD和NH_4~+-N的去除率分别为85%和90%。垃圾渗滤液生化尾水经过nZVI活化Na_2S_2O_8-NaClO体系处理后污染程度显著降低,大量腐殖酸类物质被自由基降解。  相似文献   

10.
利用热活化Na_2S_2O_8体系产生的SO_4~-·处理渗滤液生化尾水,考察了氧化剂投加量、p H、反应温度、反应时间等因素对处理效果的影响。实验结果表明,该方法能有效地去除渗滤液生化尾水中的污染物质,在p H=4,反应时间t=12 h,反应温度T=60℃,Na_2S_2O_8质量浓度为4 g/L的条件下,COD与色度的去除率分别为63%与100%。紫外光谱分析表明:废水水样经热活化体系处理后,大量的大分子腐殖质类物质被降解为小分子的富里酸,有机污染程度下降。  相似文献   

11.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

12.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

13.
《应用化工》2022,(9):2440-2443
采用Fenton氧化法对橡胶硫化促进剂生产废水进行预处理,考察了酸析法以及H_2O_2投加量、Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量为2.8 g/L,反应时间为40 min。此时COD的去除率达82.91%。将酸析与Fenton氧化法联合后COD的去除率可达到85.78%,效果良好,为后续蒸发结晶分离氯化钠、硫酸钠奠定了基础。  相似文献   

14.
以柠檬酸单独络合铜离子、柠檬酸单独络合镍离子、柠檬酸综合络合铜镍离子这3种模拟电镀废水为对象,采用芬顿(Fenton)、高锰酸钾(KMnO_4)以及过硫酸钠(Na_2S_2O_8)三种氧化法进行氧化破络,并结合加碱沉淀工艺对铜镍离子进行去除。结果表明,Fenton氧化法最佳反应参数:初始pH值为3.0,Fe~(2+):H_2O_2摩尔比为1:10,30%H_2O_2投加量为0.05 mL/L,反应时间为30 min。KMnO_4氧化法最佳反应参数:初始pH值为3.0~4.0,KMnO_4投加量为37.5 mg/L,反应时间为80 min。Na_2S_2O_8氧化法最佳反应参数:温度为20℃,初始pH值为2~7,S_2O_8~(2-):Fe~(2+)摩尔比为1:1,Na_2S_2O_8投加量为0.1 g/L,反应时间为90 min。对比三种氧化法,可以得出,对pH的适应性:Na_2S_2O_8氧化法KMnO_4氧化法Fenton氧化法;氧化效率:Fenton氧化法KMnO_4氧化法Na_2S_2O_8氧化法;经济效率:KMnO_4氧化法Na_2S_2O_8氧化法Fenton氧化法。因此,对于不同的废水,根据其特点选择合适的处理方法是十分必要的。  相似文献   

15.
尤克非  石健  张彦 《广东化工》2014,(1):98-99,105
采用Fenton氧化、超声辐射和超声-Fenton氧化三种方法处理含阴离子表面活性剂SDS的弱酸艳红B染料废水,考察溶液初始pH、H2O2投加量、FeSO4投加量、反应时间和超声功率对废水色度和COD的影响。结果表明:单独超声对废水色度和COD的去除没有效果,超声-Fenton氧化法对废水COD的去除效果明显优于Fenton氧化法。在pH 2.5,温度50℃,H2O2投加量4 mL/L,FeSO4投加量300 mg/L,反应时间90 min及超声功率400 W的条件下,废水色度去除率为98%,COD去除率为72%,比单独Fenton氧化法COD去除率提高25%。  相似文献   

16.
固体废弃物预处理中药制药废水的实验研究   总被引:1,自引:0,他引:1  
采用固体废弃物(铁屑和炉渣)预处理中药制药废水,并以COD去除率和脱色率为指标考察其处理效果。考察了废水pH值、试剂投加量、反应时间等对COD去除率及脱色率的影响,确定了最适工艺条件。结果表明,在弱酸性条件下内电解处理效果较好;加入适量的H2O2可明显提高对COD和色度的去除效果;内电解处理后投加适量的石灰乳对废水的COD去除和脱色均有利。废水预处理的最适工艺条件为:常温下,废水的pH为5.0~6.5,铁屑加入量为60 g/L,炉渣加入量为100 g/L,H2O2加入量为20 mL/L,反应30 min后,加入石灰乳(16 mL/L)调节pH至9。在此条件下,废水COD去除率及脱色率可分别达到73%和96%以上,而且处理成本较低。  相似文献   

17.
采用微波诱导活性炭负载铁铜(Fe_3O_4-CuO-AC)催化H_2O_2、Na_2S_2O_8处理二乙基次膦酸铝(AlPi)废水,探究了两种体系下pH、催化剂投加量、氧化剂投加量、温度等因素对废水中总磷去除率的影响,对比了双氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8+H_2O_2)与两种单一氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8、MW/Fe_3O_4-CuO-AC/H_2O_2)对AlPi的氧化效果。结果表明,双氧化体系对AlPi模拟废水和工业废水中总磷的去除率可分别达到85.47%、71.43%,显著高于单一氧化体系。  相似文献   

18.
针对制药废水二级生化处理出水仍存在COD_(Cr)和色度偏高的不足,试验采用改性粉煤灰吸附-Fenton氧化法对其进行深度处理研究。探讨了pH值、H_2O_2投加量、Fe~(2+)投加量、反应时间等因素对COD_(Cr)去除率的影响。结果表明,在加热温度为400℃时粉煤灰改性效果最佳。在此最佳改性粉煤灰吸附条件下,当系统pH值为5、反应时间为2 h,H_2O_2(30%)投加量为300 mg/L、Fe~(2+)投加量为100 mg/L的条件下,制药废水二级生化出水中的COD_(Cr)去除率达到74.5%。  相似文献   

19.
利用O3/H2O2法对某制药厂产生的嘧啶废水进行预处理,通过正交实验考察了pH、反应时间、O3流量和H2O2投加量对废水COD去除率的影响。单因素优化实验结果表明,当pH为11.00、反应时间为70 min、O3流量为4 g/h、30%H2O2投加量为65 mmol/L时,废水COD、TOC和色度的去除率分别达到66.12%、70.34%和96.67%,B/C由0.05提高到0.33,可生化性明显提高,能够满足后续生化处理需要。  相似文献   

20.
以铅锌冶炼废水为对象,采用铁碳微电解技术进行处理,考察pH值、铁粉投加量、铁碳比和反应时间四因素对废水中COD和色度去除率的影响。实验结果表明:当在pH值为5,铁粉投加量为40 g/L,铁碳比为3∶1,反应时间为50 min的条件下,COD和色度的去除效果均达到最佳,分别为84.13%和62.94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号