首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
导体温度是反应电力电缆运行状态的重要参数,对于含有内置光纤的电力电缆,通过建立光纤到电缆导体的热路模型,推导出导体温度变化表达式,利用光纤所测得温度和实时负荷计算电缆导体的温度,并搭载了实验平台,实际测试电缆导体温度与电缆导体温度计算结果相比较。研究发现:本文提出的计算电缆导体温度的方法满足工程需要,误差来源于光纤测量系统、电缆自身热物性参数和土壤热阻系数,其中土壤热阻系数越大误差越大;实际运行中的电缆线路具有很大的裕度,对于2 200 mm~2和1 400 mm~2电力电缆而言,以60%额定载流量能持续运行8 h为基准,2 200 mm~2的电缆可以施加1.45倍的过负荷,1 400 mm~2电力电缆可以施加1.28倍的过负荷。  相似文献   

2.
单芯电缆线芯温度的非线性有限元法实时计算   总被引:2,自引:1,他引:2  
考虑电缆材料热性参数是温度的函数及忽略热量沿着线芯轴向传输所造成的线芯温度计算误差,为提高电缆线芯温度计算的精度,提出基于非线性有限单元法计算电缆导体的温度。研究电缆导体径向、轴向温度梯度以及热量扩散规律,分析运行电流、外界环境温度等因素对电缆线芯轴向、径向温度分布的影响。根据传热学原理,研究电缆热性参数随温度变化对电缆导体温度的影响,建立电缆导体温度计算三维非线性有限元模型,并通过实验数据对非线性有限元模型进行验证和修正。实验和有限元仿真的对比表明:忽略电缆热量沿着轴向传输以及热性参数的改变会造成线芯温度计算误差;所提出的电缆导体温度实时计算非线性有限元模型的有效性,为高温下运行电缆导体温度监测与负荷预测奠定了基础。  相似文献   

3.
运行电缆导体温度监测一直是电缆安全运行所关注的问题。运行电缆某时刻导体温度不能直接测量,往往是在已知电缆导体初始温度的前提下,通过计算间接获取。因此提出了用一定时段稳态温度直接作为导体实时温度计算初始值,并利用暂态和稳态热路模型对暂态和稳态导体温度进行了计算。通过试验证实了可行性,并在某工程中进行了验证,为运行电缆的安全运行和预警创造条件。  相似文献   

4.
邓世聪  胡冉  叶文忠 《高电压技术》2020,(12):4430-4434
电缆绝缘失效是电网安全的重要威胁之一,根据电缆导体温度、电流、电压、时空等参数可有效评价电缆系统利用率和健康状态。为此,提出采用导体内置测温光纤的电缆测控系统实现对运行电缆温度的实时测量。基于导体内置测温光纤电缆和中间接头结构的试验模型,利用热场有限元分析方法计算获得电缆系统导体温度的分布规律;利用导体内置光纤电缆构建实验系统,获得模拟电缆系统在施加1 000 A电流负载后电缆轴向温度分布。实验结果表明:距离电缆接头两端约1 m范围内的电缆本体温度高于电缆接头内部温度,电缆系统安全运行和载流量阈值评估应更加关注接头附近电缆本体温度值的变化。  相似文献   

5.
电力电缆导体温度可为线路载流量及运行状态的评估提供依据。然而,在当前电缆温度计算中,导体的轴向温度分布通常被忽略,无法准确描述电缆运行的热动态过程。为此,基于热平衡原理,在状态空间内提出了计及轴向传热的中低压单芯电缆导体的温升模型。为克服模型参数难以确定的问题,提出了基于粒子群优化算法的电缆热路参数辨识方法。为验证模型精度,建立了电缆温升实验平台,在不同电流下对空气中敷设电缆进行了轴向温升实验。计算结果与实验结果的对比表明,当电缆存在轴向温度梯度时,所提状态空间模型结果精度高于IEC60287标准模型,能够满足中低压单芯电缆导体在不同电流条件下的轴向温升计算要求。  相似文献   

6.
有限元法计算地下电缆稳态温度场及其影响因素   总被引:6,自引:5,他引:1  
王有元  陈仁刚  陈伟根  田劲  袁园 《高电压技术》2009,35(12):3086-3092
为了更准确地模拟地下电缆的敷设环境,克服传统方法需要大量试验研究的不足,基于有限元法和传热学的基本原理,采用有限单元自动划分法建立了地下电缆稳态温度场模型。该模型综合考虑了电缆敷设条件和外界环境因素对电缆稳态温度场分布的影响,并可根据这些因素的变化对相关模型参数进行修改,进而准确分析电缆各层及其周围敷设区域的稳态温度场分布情况。根据电缆结构参数、损耗参数和敷设区域的物性参数,提出了一种基于二分法的电缆导体温度计算方法,实现了导体温度的快速准确计算。通过实例分析得出了不同影响因素对电缆温度场分布的影响规律,并分析了不同影响因素对计算准确性、可靠性的影响情况,为优化电缆敷设方式提供了重要的理论依据。  相似文献   

7.
为测量电缆导体运行温度,提出了一种基于电磁耦合原理的电缆导体运行温度直接测量方法,通过在电缆接头处植入测温传感器,直接获取电缆导体的运行温度。与现有的测量电缆表皮温度后根据热力学模型计算导体温度的方法相比,该方法可以快速精确测量电缆接头处导体的实时温度,从而及时发现局部发热点。根据传感器电路结构的不同,直接测温技术分为2种基本方式:有源传感器方式和无源传感器方式。有源传感器方式的测温精度较高,而无源传感器方式则具有传感器体积小、测温范围宽的优点。详细介绍了一种有源传感器测温模块的安装方法,并搭建了测试系统,进行了阶跃电流下单芯110kV电缆的模拟现场温升试验。结果表明,植入的传感器模块不影响电缆接头的电气性能,所测温度与模拟回路直接测量的温度曲线在形状及响应趋势上完全一致,验证所提出方法的有效性。  相似文献   

8.
针对目前难以直接测量运行电缆导体温度的问题,将10 kV三芯电缆热路简化为只含一个等效热容和一个等效热阻的暂态热路,利用一阶热路的响应实现电缆实时导体温度的解析计算;同时,在试验场进行了阶跃电流试验和周期负荷载流量试验,测量电缆导体温度和外皮温度.根据测量的电缆外皮温度和加载的负荷电流计算出试验电缆的实时导体温度,对比发现导体温度的实时计算值与测量值吻合度较高,验证了该计算方法的正确性.该解析计算方法易于实现、计算准确,不仅可用于计算常用敷设方式下不同回路三芯电缆实时导体温度,还可根据电缆当前运行状态适当调整负荷电流,在保证安全的前提下提高现有电缆线路的输电能力.  相似文献   

9.
为更好地对电缆线芯温度进行间接测量,提出一种以电缆运行电流和表皮温度为输入的线芯温度动态计算方法。首先建立了电缆传热的简化热路模型,并在误差敏感性分析的基础上引入了线芯电阻随温度变化的二阶修正;然后对模型表征的微分方程进行离散化,得到仅有4个模型参数的计算公式;最后以电缆实验(或运行)数据为样本构造学习矩阵,并通过矩阵的广义逆计算模型参数,代入公式完成整个动态计算方法的构建。分别以室内实验电缆、在线110 k V高压电缆为对象进行了实验与分析,结果表明,相较于传统方法,该方法能够更加简单、准确地计算电缆线芯温度,有助于实现电力电缆工况的实时监测。  相似文献   

10.
根据热路与电路的相似性,建立了电缆导体温度计算热路模型,开发了基于VB程序的电缆导体温度计算软件,该软件可实时准确计算出电缆导体温度,了解电缆运行状态,为电力电缆运行维护提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号