首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Easily adjustable parameters such as area and design can affect the determination of the efficiency of donor–acceptor organic solar cells. Devices with crossing electrodes and unpatterned (semi)conducting organic layers can collect a non‐negligible current from regions usually not considered as part of the photovoltaic element, a fact that might lead to an overestimation of the power conversion efficiency.  相似文献   

2.
A novel fullerene derivative, 1,1‐bis(4,4′‐dodecyloxyphenyl)‐(5,6) C61, diphenylmethanofullerene (DPM‐12), has been investigated as a possible electron acceptor in photovoltaic devices, in combination with two different conjugated polymers poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐para‐phenylene vinylene] (OC1C10‐PPV) and poly[3‐hexyl thiophene‐2,5‐diyl] (P3HT). High open‐circuit voltages, VOC = 0.92 and 0.65 V, have been measured for OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. In both cases, VOC is 100 mV above the values measured on devices using another routinely used fullerene acceptor, [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM). This is somewhat unexpected when taking into account the identical redox potentials of both acceptor materials at room temperature. The temperature‐dependent VOC reveals, however, the same effective bandgap (HOMOPolymer–LUMOFullerene; HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital) of 1.15 and 0.9 eV for OC1C10‐PPV and P3HT, respectively, independent of the acceptor used. The higher VOC at room temperature is explained by different ideality factors in the dark‐diode characteristics. Under white‐light illumination (80 mW cm–2), photocurrent densities of 1.3 and 4.7 mA cm–2 have been obtained in the OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. Temperature‐dependent current density versus voltage characteristics reveal a thermally activated (shallow trap recombination limited) photocurrent in the case of OC1C10‐PPV:DPM‐12, and a nearly temperature‐independent current density in P3HT:DPM‐12. The latter clearly indicates that charge carriers traverse the active layer without significant recombination, which is due to the higher hole‐mobility–lifetime product in P3HT. At the same time, the field‐effect electron mobility in pure DPM‐12 has been found to be μe = 2 × 10–4 cm2 V–1 s–1, that is, forty‐times lower than the one measured in PCBM (μe = 8 × 10–3 cm2 V–1 s–1).  相似文献   

3.
A solution‐processed polymer tandem cell fabricated by stacking two single cells in series is demonstrated. The two bulk‐heterojunction subcells have complementary absorption maxima at λmax ~ 850 nm and λmax ~ 550 nm, respectively. A composite middle electrode is applied that serves both as a charge‐recombination center and as a protecting layer for the first cell during spin‐coating of the second cell. The subcells are electronically coupled in series, which leads to a high open‐circuit voltage of 1.4 V, equal to the sum of each subcell. The layer thickness of the first (bottom) cell is tuned to maximize the optical absorption of the second (top) cell. The performance of the tandem cell is presently limited by the relatively low photocurrent generation in the small‐bandgap polymer of the top cell. The combination of our tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells in the near future.  相似文献   

4.
The emerging field of stacked layers (double‐ and even multi‐layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single‐layer bulk heterojunction photovoltaic cell. Furthermore, the low charge‐carrier mobilities of most organic materials limit the thickness of the active layer. Consequently, only part of the intensity of the incident light at the absorption maximum is absorbed. A tandem or multi‐junction solar cell, consisting of multiple layers each with their specific absorption maximum and width, can overcome these limitations and can cover a larger part of the solar flux. In addition, tandem or multi‐junction solar cells offer the distinct advantage that photon energy is used more efficiently, because the voltage at which charges are collected in each sub‐cell is closer to the energy of the photons absorbed in that cell. Recent developments in both small‐molecule and polymeric photovoltaic cells are discussed, and examples of photovoltaic architectures, geometries, and materials combinations that result in tandem and multi‐junction solar cells are presented.  相似文献   

5.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

6.
Thiophene‐containing polymers blended with fullerenes have recently demonstrated impressively high photovoltaic efficiencies. One drawback of this class of polymers is their relatively low ionization potential, which leads to rather low open‐circuit voltages. Polyterthiophenes belong to a material class that has recently captured a large amount of interest for polymer electronic applications because of its excellent transport properties. Because of the slightly lower ionization potential, this material class appears more attractive for photovoltaic applications than polythiophenes. In this work, the photovoltaic performance of bulk heterojunction solar cells from polyterthiophene/fullerene composites is discussed and compared to the polymer/fullerene blend morphology.  相似文献   

7.
The photovoltaic behavior of three hexa‐peri‐hexabenzocoronene (HBC) derivatives has been investigated with respect to the influence of the alkyl side chains. Upon increasing the side chain length, the HBC chromophore becomes diluted, thus decreasing the amount of light absorbed. Differential scanning calorimetry and powder X‐ray analysis reveal that the HBC with the 2‐ethyl‐hexyl side chain is in a crystalline state at room temperature, while the other two HBCs containing 2‐hexyl‐decyl and 2‐decyl‐tetradecyl substituents in so‐called plastic crystalline state. The HBC with the shortest side chain is proven to be the best donor for perylenediimide, showing a highest external quantum efficiency of 12 %. Furthermore, scanning electron microscopy imaging suggested an important role of the morphology of the active film in determining the performance of the device.  相似文献   

8.
Ultra‐thin films of subphthalocyanine (SubPc) were grown onto Si/SiO2 substrates by organic molecular beam deposition and the complex refractive index has been characterized by spectroscopic ellipsometry. The peak maximum in the extinction coefficient is determined to be 1.6 at 590 nm and the dielectric constant equals 3.9 in the limit of long wavelength. These values are extraordinary high when compared to the well‐known metal‐phthalocyanines and will be beneficial for the performance in a photovoltaic cell. The amorphous SubPc structure on top of indium‐tin‐oxide (ITO) as well as quartz glass is imaged by atomic force microscopy and scanning electron microscopy and we have characterized the nearly flat surface topology. Next, subphthalocyanine films in combination with buckminsterfullerene (C60) have been studied in a planar bilayer donor/acceptor heterojunction by current density‐voltage characterization under AM 1.5 simulated illumination at various light intensities. A power conversion efficiency of 3.0 % under 1 sun was measured. Finally, the external and internal quantum efficiencies demonstrated peak maxima at 590 nm of 46 % and 55 %, respectively. Considering the abrupt junction at the donor/acceptor interface, the electron transfer from SubPc to the acceptor material is thus determined to be highly efficient.  相似文献   

9.
Organic solar cells were fabricated by stacking aromatic amine and C60 layers. The energy conversion efficiency of these solar cells was low because of poor photoabsorption by these layers and short diffusion length of excitons. However, the photocurrent density was increased by about 3 times by the application of heat treatment to the stacked organic layers at 140 °C, and the maximum energy conversion efficiency reached 1.1 % under AM 1.5, 100 mW cm–2 simulated solar light. The internal quantum efficiency of the photocurrent after the annealing reached about 45 %. When the aromatic amine layer was about 100 nm thick, the organic layers after the annealing showed a wrinkled structure under an optical microscope. The annealing temperature needed for the formation of this structure was in good agreement with the temperature needed for the increase in the photocurrent. The morphological change caused by the annealing was attributed to infiltration of the amorphous aromatic amine compound into grain boundaries of the microcrystalline C60 layer, resulting in expansion of the C60 layer and the wrinkled structure of the organic layers. From observation by electron microscopy, the mixed form of these two compounds near the interface was found to be suited to solar cells because the C60 and aromatic amine phases wedge each other in a direction normal to two electrodes. However, the annealing slightly lowered photovoltage of the solar cell. This effect was attributed to a partial contact of the C60 layer with a counter electrode through the aromatic amine layer.  相似文献   

10.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

11.
The charge transport in organic solar cells is investigated by surface potential measurements via scanning Kelvin probe microscopy. Access to the solar cell's cross‐section is gained by milling holes with a focused ion beam which enables the direct scan along the charge transport path. In a study of poly(3‐hexylthiophene):1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C61 (P3HT:PCBM) bulk heterojunction solar cells, the open circuit voltage is built up at the top contact. A comparison of the potential distribution within normal and inverted solar cells under operation exhibits strongly different behaviors, which can be assigned to a difference in interface properties.  相似文献   

12.
The influence of the hole transport layer on device stability in polymer:fullerene bulk‐heterojunction solar cells is reported. Three different hole transport layers varying in composition, dispersion solvent, electrical conductivity, and work function were used in these studies. Two water‐based hole transport layers, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) and polyaniline:poly(styrene sulfonate), and one isopropyl alcohol‐based polyaniline:poly(styrene sulfonate) transport layer were investigated. Solar cells with the different hole transport layers were fabricated and degraded under illumination. Current–voltage, capacitance–voltage, and capacitance–frequency data were collected at light intensities of 16, 30, 48, 80, and 100 mW cm?2 over a period of 7 h. Device performance and stability were compared between nonencapsulated and encapsulated samples to gain understanding about degradation effects related to oxygen and water as well as degradation mechanisms related to the intrinsic instability of the solar cell materials and interfaces. It is demonstrated that the properties of the hole transport layer can have a significant impact on the stability of organic solar cells.  相似文献   

13.
Organic solar cells are a promising route towards large‐area and low‐price photovoltaic systems. The devices are composed of at least two layers: the hole‐transport layer and the electron‐transport layer. The light absorption can occur in one or both layers. At the interface of the layers the excitons are separated into charge carriers, and every layer deals with one type of carrier. Higher efficiencies of the separation process can be obtained by using a mixed layer containing both materials to obtain a very high interface area. Although the structure of the mixed layers used plays a crucial role for the device performance, until now the morphologies have not been elucidated. In order to correlate physical and optical findings with structure and morphology for the materials in question, electron microscopy experiments were performed on the single components as well as on the layer systems. The conventional electron microscope is a poor phase microscope. As consequence, weak‐phase objects like organic molecules have to be stained or imaged under strong defocus to produce an observable contrast. Artifacts caused by chemical staining and the appearance of Fresnel diffraction using the defocus technique represent the main problems of conventional microscopy. These artifacts can be avoided using electron holography. Holograms of ultrathin sections of thin layers composed of organic dye molecules were recorded. Subsequently, the phase images were reconstructed. In this manner, we succeeded in obtaining high‐contrast electron micrographs without applying staining or defocus. In addition, holograms of crystalline C60 and zinc phthalocyanine were successfully recorded. Holography has been shown to be a useful tool to image beam‐sensitive and weak‐phase objects without artifacts.  相似文献   

14.
The fabrication of a solution‐processed polymer tandem cell by stacking two single cells in series is reported by de Boer and co‐workers on p. 1897. The bottom and top cell are complementary with respect to their absorption spectra and the layer thickness of the bottom cell was optimized in order to create an optical cavity that efficiently transmits the required wavelength for the top cell. The combination of this tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells. A solution‐processed polymer tandem cell fabricated by stacking two single cells in series is demonstrated. The two bulk‐heterojunction subcells have complementary absorption maxima at λmax ~ 850 nm and λmax ~ 550 nm, respectively. A composite middle electrode is applied that serves both as a charge‐recombination center and as a protecting layer for the first cell during spin‐coating of the second cell. The subcells are electronically coupled in series, which leads to a high open‐circuit voltage of 1.4 V, equal to the sum of each subcell. The layer thickness of the first (bottom) cell is tuned to maximize the optical absorption of the second (top) cell. The performance of the tandem cell is presently limited by the relatively low photocurrent generation in the small‐bandgap polymer of the top cell. The combination of our tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells in the near future.  相似文献   

15.
有机薄膜太阳电池作为一种新型光伏电池,近年来得到了迅猛发展。其制备工艺简单、价格低廉、柔性、质轻,为人类解决能源问题提供了一种崭新的途径。文章综述了近年来有机薄膜太阳电池的发展状况,结合有机薄膜太阳电池的发展历史,分析了单异质结、体异质结和叠层三种典型结构器件的工作原理和研究成果,探讨了各种器件结构的优缺点,并对有机薄膜太阳电池的发展趋势作了展望。  相似文献   

16.
Small amounts of impurity, even one part in one thousand, in polymer bulk heterojunction solar cells can alter the electronic properties of the device, including reducing the open circuit voltage, the short circuit current and the fill factor. Steady state studies show a dramatic increase in the trap‐assisted recombination rate when [6,6]‐phenyl C84 butyric acid methyl ester (PC84BM) is introduced as a trap site in polymer bulk heterojunction solar cells made of a blend of the copolymer poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the fullerene derivative [6,6]‐phenyl C61 butyric acid methyl ester (PC60BM). The trap density dependent recombination studied here can be described as a combination of bimolecular and Shockley–Read–Hall recombination; the latter is dramatically enhanced by the addition of the PC84BM traps. This study reveals the importance of impurities in limiting the efficiency of organic solar cell devices and gives insight into the mechanism of the trap‐induced recombination loss.  相似文献   

17.
With the rapid development of power conversion efficiency (PCE), flexibility–stability of organic solar cells (OSCs) are becoming one of the primary barriers for commercialization. This work shows that insulating poly(aryl ether) (PAE) resins have highly twisted‐stiff backbones without any side chains, which possess excellent mechanical stability, thermal stability, and good compatibility with organic photovoltaic materials. After introducing 5 wt% PAE resin as supporting matrices into the bulk heterojunction (BHJ) layer, the device yields a high PCE of 16.13%. Importantly, the devices show impressive flexibility and improved stability with passivated morphology, such as PM6/Y6‐based devices with 30 wt% PAE retains the PCE of 15.17% and exhibits enhanced 4.4‐fold elongation at break (25.07%). This is the recorded stretchability of the BHJ layer for OSCs with PCE > 8%, and morphological changes during tensile deformation are first investigated by in situ wide‐angle X‐ray scattering measurements. The PAE matrices strategy exhibits good universality in the other four photovoltaic systems. These results demonstrate that heat‐resistant PAE resins serve as supporting matrices with a tunneling effect into OSCs without sacrificing photovoltaic performance and simultaneously improve the flexibility and stability of devices, which can play an important role in promoting the development of stable and wearable electronics.  相似文献   

18.
Two new ruthenium complexes [Ru(dcbpy)(L)(NCS)2], where dcbpy is 4,4′‐dicarboxylic acid‐2,2′‐bipyridine and L is 3,8‐bis(4‐octylthiophen‐2‐yl)‐1,10‐phenanthroline (CYC‐P1) or 3,8‐bis(4‐octyl‐5‐(4‐octylthiophen‐2‐yl)thiophen‐2‐yl)‐1,10‐phenanthroline (CYC‐P2), are synthesized, characterized by physicochemical and semiempirical computational methods, and used as photosensitizers in nanocrystalline dye‐sensitized solar cells. It was found that the difference in light‐harvesting ability between CYC‐P1 and CYC‐P2 is associated mainly with the location of the frontier orbitals, in particular the highest occupied molecular orbital (HOMO). Increasing the conjugation length of the ancillary ligand decreases the energy of the metal‐to‐ligand charge transfer (MLCT) transition, but at the same time reduces the molar absorption coefficient, owing to the HOMO located partially on the ancillary ligand of the ruthenium complex. The incident photon‐to‐current conversion efficiency curves of the devices are consistent with the MLCT band of the complexes. Therefore, the overall efficiencies of CYC‐P1 and CYC‐P2 sensitized cells are 6.01 and 3.42 %, respectively, compared to a cis‐di(thiocyanato)‐bis(2,2′‐bipyridyl)‐4,4′‐dicarboxylate ruthenium(II)‐sensitized device, which is 7.70 % using the same device‐fabrication process and measuring parameters.  相似文献   

19.
Bulk heterojunction (BHJ) processing technology has had an irreplaceable role in the development of organic solar cells (OSCs) in the past decades due to the significant advantages in achieving high‐power conversion efficiency (PCE). However, the difficulty in exploring and regulating morphology makes it inadequate for upscaling large‐area OSCs. In this work, printable high‐performance ternary devices are fabricated by a pseudo‐planar heterojunction (PPHJ) strategy. The fullerene derivative indene‐C60 bisadduct (ICBA) is incorporated into PM6/IT‐4F system to expand the vertical phase separation and facilitate an obvious PPHJ structure. After the addition of ICBA, the IT‐4F enriches on the surface of active layer, while PM6 is accumulated underneath. Furthermore, it increases the crystallinity of PM6, which facilitates exciton dissociation and charge transfer. Accordingly, 1.05 cm2 devices are fabricated by blade‐coating with an enhanced PCE of 14.25% as compared to the BHJ devices (13.73%). The ternary PPHJ strategy provides an effective way to optimize the vertical phase separation of organic semiconductor during scalable printing methods.  相似文献   

20.
Flexible and stretchable organic solar cells (OSCs) have attracted enormous attention due to their potential applications in wearable and portable devices. To achieve flexibility and stretchability, many efforts have been made with regard to mechanically robust electrodes, interface layers, and photoactive semiconductors. This has greatly improved the performance of the devices. State‐of‐the‐art flexible and stretchable OSCs have achieved a power conversion efficiency of 15.21% (16.55% for tandem flexible devices) and 13%, respectively. Here, the recent progress of flexible and stretchable OSCs in terms of their components and processing methods are summarized and discussed. The future challenges and perspectives for flexible and stretchable OSCs are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号