首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysulfone main chains have been functionalized with hypersulfonated aromatic side chains where the sulfonic acid groups were highly concentrated on a local scale, with two acid groups placed on the same aromatic ring. This molecular design was implemented to promote the nanophase separation that takes place in proton‐exchange membranes between the hydrophobic polymer main chain and the hydrophilic ionic groups responsible for the water uptake and conduction. Morphological investigations revealed that polysulfones functionalized with disulfonaphthoxybenzoyl or trisulfopyrenoxybenzoyl side chains contained larger and more uniform ionic clusters, as compared to conventionally sulfonated polysulfones where the acid groups are dispersed along the main chain. Membranes based on the polymers carrying hypersulfonated side chains formed efficient networks of water‐filled nanopores upon hydration, which facilitated excellent levels of proton conductivity exceeding that of the commercial Nafion membrane at moderate water uptakes.  相似文献   

2.
A family of multiblock copolymers consisting of alternating fully sulfonated hydrophilic poly(phenylene sulfone) and hydrophobic poly(phenylene ether sulfone) segments are prepared and characterized. The multiblock copolymers are formed by the coupling of preformed hydrophilic and hydrophobic blocks using a specially designed coupling agent. The block lengths (degree of polymerization) of both segment types were varied in order to control the ion exchange capacity. Solution cast films show spontaneous nanophase separation leading to distinct bicontinuous morphologies with correlation lengths around 15 nm. The hydrophobic phase gives the membranes their advantageous viscoelastic properties even at high temperatures under both wet and dry conditions, while proton conductivity takes place within the hydrophilic phase. Since the properties of fully sulfonated poly (phenylene sulfone)s are locally preserved within the hydrophilic domain, the membranes show very high proton conductivity and high hydrolytic stability. The very high degree of water dispersion within the hydrophilic domains leads to very low electro‐osmotic water drag. Because of their superior transport and stability properties these multiblock copolymers have a great potential for use as a substitute for perfluorosulfonic acid membranes which are used as separator materials in electrochemical applications such as polymer electrolyte membrane (PEM) fuel cells and redox flow batteries.  相似文献   

3.
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.  相似文献   

4.
Acid loss and plasticization of phosphoric acid (PA)-doped polymer electrolyte membranes are critical hampers for its actual application especially during startup/shutdown stages due to the produced water and thermal stress. To conquer these barriers, a proton conductor confinement strategy is introduced, which may trap PA molecules in the side-chain acidophilic microphase and weaken plasticizing effect caused by PA toward the polymer backbone to remain membrane tensile stress. The grafted polyphenylene oxide (PPO) is synthesized as model polymers, both molecular electrostatic potential and molecular dynamics reveal the retention mechanism between PA and side-chain of PPO as well as the aggregation state of PA. Through precisely regulating polymer side-chain structure and defined plasticization quantitative indicator, significant refinements in membrane's conductivity, durability, and single-cell performance are achieved successfully. The designed PPO membranes exhibit ultra-fast and stable proton conducting even at low proton carrier concentrations and under wide-range working temperature between 80 oC–180 °C as well as satisfied resistance to harsh accelerated aging test. These insights will shed light on holistic understanding of PA interactions and retention from molecular level, and provide radical approaches toward high-performance PA/PEMs design.  相似文献   

5.
In this report, a novel type of photoresponsive liquid crystalline polymer with a block mesogenic side‐group is demonstrated. The block mesogene is an amphipathic molecule containing a hydrophobic mesogene (azotolane moiety) and hydrophilic oligooxyethylene moieties in the same unit. The block mesogene in the polymer plays a role in liquid crystalline, amphiphilic and photoresponsive properties. As expected, a film prepared from the polymer exhibits phase separation of a lamellar structure due to cooperative motion between liquid crystal assembly and nanophase separation. The morphology of the lamellae can be aligned upon irradiation of linearly polarized light. Moreover, a photochemical phase transition induced by unpolarized UV irradiation erases the surface morphology. The erased nanostructure can be recovered by annealing or irradiation of linearly polarized light, meaning that the surface morphology is rewritable via a photochemical process.  相似文献   

6.
Conjugated polymers that support mixed (electronic and ionic) conduction are in demand for applications spanning from bioelectronics to energy harvesting and storage. To design polymer mixed conductors for high‐performance electrochemical devices, relationships between the chemical structure, charge transport, and morphology must be established. A polymer series bearing the same p‐type conjugated backbone with increasing percentage of hydrophilic, ethylene glycol side chains is synthesized, and their performance in aqueous electrolyte gated organic electrochemical transistors (OECTs) is studied. By using device physics principles and electrochemical analyses, a direct relationship is found between the OECT performance and the balanced mixed conduction. While hydrophilic side chains are required to facilitate ion transport—thus enabling OECT operation—swelling of the polymer is not de facto beneficial for balancing mixed conduction. It is shown that heterogeneous water uptake disrupts the electronic conductivity of the film, leading to OECTs with lower transconductance and slower response times. The combination of in situ electrochemical and structural techniques shown here contributes to the establishment of the structure–property relations necessary to improve the performance of polymer mixed conductors and subsequently of OECTs.  相似文献   

7.
The application of well‐defined poly(furfuryl glycidyl ether) (PFGE) homopolymers and poly(ethylene oxide)‐b‐poly(furfuryl glycidyl ether) (PEO‐b‐PFGE) block copolymers synthesized by living anionic polymerization as self‐healing materials is demonstrated. This is achieved by thermo‐reversible network formation via (retro) Diels‐Alder chemistry between the furan groups in the side‐chain of the PFGE segments and a bifunctional maleimide crosslinker within drop‐cast polymer films. The process is studied in detail by differential scanning calorimetry (DSC), depth‐sensing indentation, and profilometry. It is shown that such materials are capable of healing complex scratch patterns, also multiple times. Furthermore, microphase separation within PEO‐b‐PFGE block copolymer films is indicated by small angle X‐ray scattering (lamellar morphology with a domain spacing of approximately 19 nm), differential scanning calorimetry, and contact angle measurements.  相似文献   

8.
Water retention is a pervasive issue in agriculture and industry. Inspired by the water‐storage mechanisms in plant cells, three kinds of polymeric microcapsules (PMCs) with carboxylic acid, sulfonic acid, and pyridyl groups are prepared using distillation–precipitation polymerization. The size of the lumen of the PMCs may govern the static water uptake by holding water molecules in a free‐water state, and the functional groups in the shell of PMCs may manipulate dynamic water release by holding water molecules in a bound‐water state, thus yielding PMCs with high and tunable water‐retention properties. Incorporation of PMCs into composite membranes gives rise to dramatically enhanced water‐retention properties and proton‐transfer pathway, and consequently increased proton conductivity by up to one order of magnitude over the control polymer membrane, under low relative humidity of 20%. This study may offer a facile and generic strategy to design and prepare a variety of materials with superior water‐retention properties.  相似文献   

9.
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer‐to‐initiator feed ratio. PolyMPC and polyPEGMA‐grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA‐coated ferritin in organic solvents enables its processing with polystyrene‐block‐poly(ethylene oxide) copolymers, and selective integration into the PEO domains of microphase‐separated copolymer structures.  相似文献   

10.
The host–guest interaction between polymer nanoparticles and guest molecules plays a key role in fields such as controlled drug delivery, separation, and nanosensors. To understand this host–guest interaction, a series of hybrid polymer nanoparticles (SiO1.5‐hPEA NPs) are designed and prepared based on hyperbranched poly(ether amine) (hPEA) with the different hydrophobicity and functional groups. Their adsorption behavior to twelve hydrophilic dyes in aqueous solution is studied. The core‐crosslinked hybrid nanoparticles (SiO1.5‐hPEA NPs) are prepared by direct dispersion of hPEA containing trimethoxysilyl moieties (TMS‐hPEA) in aqueous solution, which exhibit sharp multiresponse to temperature, pH, and ionic strength in aqueous solution. The effect of molecular structure of TMS‐hPEA on the host–guest interaction between SiO1.5‐hPEA NPs and hydrophilic dyes is investigated in detail. The obtained SiO1.5‐hPEA NPs interact selectively with different hydrophilic dyes in aqueous solution. The distribution coefficient (K) for partitioning of dyes between SiO1.5‐hPEA NPs and water is proposed to define the strength of the host‐guest interaction between the nanoparticles and dyes. K increases with the increasing hydrophobicity of the hPEA backbone regardless of their charge states of SiO1.5‐hPEA NPs and dyes. A methodology is demonstrated for the smart separation of a mixture of dyes in water using SiO1.5‐hPEA NPs.  相似文献   

11.
The ability to gate (i.e., allow or block) droplet and fluid transport in a directional manner represents an important form of liquid manipulation and has tremendous application potential in fields involving intelligent liquid management. Inspired by passive transport across cell membranes which regulate permeability by transmembrane hydrophilic/hydrophobic interactions, macroscopic hydrophilic/hydrophobic Janus‐type membranes are prepared by facile vapor diffusion or plasma treatments for liquid gating. The resultant Janus membrane shows directional water droplet gating behavior in air‐water systems. Furthermore, membrane‐based directional gating of continuous water flow is demonstrated for the first time, enabling Janus membranes to act as facile fluid diodes for one‐way flow regulation. Additionally, in oil‐water systems, the Janus membranes show directional gating of droplets with integrated selectivity for either oil or water. The above remarkable gating properties of the Janus membranes could bring about novel applications in fluid rectifying, microchemical reaction manipulation, advanced separation, biomedical materials and smart textiles.  相似文献   

12.
Porous membranes with critically hydrophobic/hydrophilic phase‐separated‐like structures for use in vanadium flow battery application are first realized by solvent‐induced reassembly of a polymer blend system. Porous poly(ether sulfone) (PES)/sufonated poly(ether ether ketone) (SPEEK) blend membranes with tunable pore size are prepared via the phase inversion method. After solidification, isopropanol (IPA) is introduced to induce the reassembly of sulfonated groups and further form ion‐transport channels by using the interaction between IPA and functional groups in SPEEK. As a result, a highly phase separated membrane structure is created, composed of a highly stable hydrophobic porous PES matrix and hydrophilic interconnected small pores. The charged pore walls are highly beneficial to improving proton conductivity, while pores are simultaneously shrunk during the IPA treatment. Therefore, the resultant membranes show an excellent battery performance with a coulombic efficiency exceeding 99%, along with an energy efficiency over 91%, which is among the highest values ever reported. This article supplies an ease‐to‐operate and efficient method to create membranes with controlled ion‐transport channels.  相似文献   

13.
Developing a feasible and efficient separation membrane for the purification of highly emulsified oily wastewater is of significance but challenging due to the critical limitations of low flux and serious membrane fouling. Herein, a biomimetic and superwettable nanofibrous skin on an electrospun fibrous membrane via a facile strategy of synchronous electrospraying and electrospinning is created. The obtained nanofibrous skin possesses a lotus‐leaf‐like micro/nanostructured surface with intriguing superhydrophilicity and underwater superoleophobicity, which are due to the synergistic effect of the hierarchical roughness and hydrophilic polymeric matrix. The ultrathin, high porosity, sub‐micrometer porous skin layer results in the composite nanofibrous membranes exhibiting superior performances for separating both highly emulsified surfactant‐free and surfactant‐stabilized oil‐in‐water emulsions. An ultrahigh permeation flux of up to 5152 L m?2 h?1 with a separation efficiency of >99.93% is obtained solely under the driving of gravity (≈1 kPa), which was one order of magnitude higher than that of conventional filtration membranes with similar separation properties, showing significant applicability for energy‐saving filtration. Moreover, with the advantage of an excellent antioil fouling property, the membrane exhibits robust reusability for long‐term separation, which is promising for large‐scale oily wastewater remediation.  相似文献   

14.
Simultaneous manipulation of topological and chemical structures to induce ionic nanochannel formation within solid electrolytes is a crucial but challenging task for the rational design of high‐performance electrochemical devices including proton exchange membrane fuel cell. Herein, a novel generic approach is presented for the construction of tunable ion‐conducting nanochannels via direct assembly of graphene oxide (GO)/poly(phosphonic acid) core–shell nanosheets prepared by surface‐initiated precipitation polymerization. Using this simple and rapid approach to engineer GO/polymer nanosheets at the molecular‐level, ordered and continuous nanochannels with interconnected hydrogen‐bonded networks having a favorable water environment can be created. The resulting membranes exhibit proton conductivities up to 32 mS cm?1 at 51% relative humidity, surpassing state‐of‐the‐art Nafion membrane and all previously reported GO‐based materials.  相似文献   

15.
In this study, we report the fabrication of a novel surface with both morphology and composition heterogeneities by casting polymer blend solution. The resultant poly (methyl methacrylate) (PMMA) and amphiphilic polyurethane (A‐PU) surface has a rough structure on microscale and separated hydrophobic and hydrophilic nanodomains as well. On this surface, water drop shows a static CA about 160° but the drop is pinned on the surface at any titled angles. This phenomenon can be ascribed to the special surface characters as the air trapped in the porous surface and hydrophobic domains repel the water, leading to a very high static CA, whereas the hydrophilic domains contacting with water at the interface, though being restrained to a little fraction by the surface roughness, adhere the drop. In addition, by adding the third component, hydrophobic fluorinated polyurethane, in the blend, the formed PMMA/A‐PU/F‐PU blend surfaces show CA about 160° but the SA be able to rationally tune from small to large by adjusting the ratio of A‐PU to F‐PU. Our method provides a novel approach for controlling surface morphology, composition and corresponding surface adhesion, and may find many applications in various fields.  相似文献   

16.
Porous polymer films that can be employed for broadband and omnidirectional antireflection coatings are successfully shown. These films form a gradient‐refractive‐index structure and are achieved by spin‐coating the solution of a polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA)/PMMA blend onto an octadecyltrichlorosilane (OTS)‐modified glass substrate. Thus, a gradient distribution of PMMA domains in the vertical direction of the entire microphase‐separated film is obtained. After those PMMA domains are removed, a PS porous structure with an excellent gradient porosity ratio in the vertical direction of the film is formed. Glass substrates coated with such porous polymer film exhibit both broadband and omnidirectional antireflection properties because the refractive index increases gradually from the top to the bottom of the film. An excellent transmittance of >97% for both visible and near‐infrared (NIR) light is achieved in these gradient‐refractive‐index structures. When the incident angle is increased, the total transmittance for three different incident angles is improved dramatically. Meanwhile, the film possesses a color reproduction character in the visible light range.  相似文献   

17.
Solar‐enabled evaporation for seawater desalination is an attractive, renewable, and environment‐friendly technique, and tremendous progress has been achieved by developing various photothermal membranes. However, traditional photothermal membranes directly float on water, resulting in some limitations such as unavoidable heat‐loss to bulk water and severe salt accumulation. To solve these problems, a hydrophilic, polymer nanorod‐coated photothermal fabric is designed and fabricated, and then an indirect‐contact evaporation system by hanging the fabric is demonstrated. The two ends of the fabric are designed to be in contact with seawater to guide water flow through capillary suction. Both arc‐shaped top/bottom surfaces of the hanging fabrics are exposed to air, which can prevent heat dissipation to bulk seawater and facilitate the double‐surface evaporation upon sunlight irradiation. Our design leads to an efficient evaporation rate of 1.94 kg m?2 h?1 and high solar efficiency of 89.9% upon irradiation with sunlight (1.0 kW m?2). Importantly, the highly concentrated brine can drip from the bottom of the arc‐shaped fabric, without the appearance of solid‐salt accumulation. This indirect‐contact evaporation system establishes a new path to continuously and economically produce watersteam from seawater for fresh‐water and concentrated brine for the chlor‐alkali industry.  相似文献   

18.
Encapsulating hydrophilic chemotherapeutics into the core of polymeric nanoparticles can improve their therapeutic efficacy by increasing their plasma half‐life, tumor accumulation, and intracellular uptake, and by protecting them from premature degradation. To achieve these goals, a recombinant asymmetric triblock polypeptide (ATBP) that self‐assembles into rod‐shaped nanoparticles, and which can be used to conjugate diverse hydrophilic molecules, including chemotherapeutics, into their core is designed. These ATBPs consist of three segments: a biodegradable elastin‐like polypeptide, a hydrophobic tyrosine‐rich segment, and a short cysteine‐rich segment, that spontaneously self‐assemble into rod‐shaped micelles. Covalent conjugation of a structurally diverse set of hydrophilic small molecules, including a hydrophilic chemotherapeutic—gemcitabine—to the cysteine residues also leads to formation of nanoparticles over a range of ATBP concentrations. Gemcitabine‐loaded ATBP nanoparticles have significantly better tumor regression compared to free drug in a murine cancer model. This simple strategy of encapsulation of hydrophilic small molecules by conjugation to an ATBP can be used to effectively deliver a range of water‐soluble drugs and imaging agents in vivo.  相似文献   

19.
The fabrication of three‐dimensional (3D) diamond photonic crystals with controllable nanoroughness (≤120 nm) on the surface from epoxy‐functionalized cyclohexyl polyhedral oligomeric silsesquioxanes (POSS) is reported. The nanoroughness is generated on the 3D network due to microphase separation of the polymer chain segments in a nonsolvent during the rinsing step in holographic lithography process. The degree of roughness can be tuned by the crosslinking density of the polymer network, which is dependent on the loading of photoacid generators, the exposure dosage, and the choice of developer and rinsing solvent. Because the nanoroughness size is small, it does not affect the photonic band gap position of the photonic crystal in the infrared region. The combination of periodic microstructure and nanoroughness, however, offers new opportunities to realize superhydrophobicity and enhanced dye adsorption in addition to the photon management in the 3D photonic crystal.  相似文献   

20.
A facile method for preparing highly conductive hybrid organic?inorganic membranes is reported. These membranes are synthesized using an electrospinning process with a sol?gel‐based solution containing PVDF?HFP (polyvinylidenefluoride‐hexafluoropropylene), functionalized or not functionalized silicon alkoxides, and additives. Proton conduction measurements highlight that these hybrid membranes exhibit conductivity value of 101 mS/cm at 120 °C under 80% RH (relative humidity), comparable to the best Nafion measured under the same conditions. These membranes have a proton conductivity‐humidity variation close to Nafion and a modulus value higher than that for Nafion above 80 °C. Their proton conductivity value is about 15 mS/cm under 50% RH, and it constitutes one of the highest values reported. These interesting properties are related to the microstructure of the electrospun membranes that have been characterized using field emission scanning electron microscopy (FE‐SEM) and small angle neutron scattering (SANS). The electrospun membranes are made composed of a bundle of fibers surrounded by a functionalized silica network. The bundle of fibers corresponds to the assembly of small polymer fibers surrounded by small anisotropic functionalized silica domains. Coupling the reactive chemistry of the sol–gel‐based process with electrospinning allows the design of hybrid membranes with fractal hydrophobic/hydrophilic interfaces exhibiting different length scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号