首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we demonstrate an electrically band‐limited carrier‐suppressed return‐to‐zero (EB‐CSRZ) signal generator operating up to a 10 Gbps data rate comprising a single‐stage Mach‐Zehnder modulator and a wideband signal mixer. The wideband signal mixer comprises inverter stages, a mixing stage, and a gain amplifier. It is implemented by using a 0.13 μm CMOS technology. Its transmission response shows a frequency range from DC to 6.4 GHz, and the isolation response between data and clock signals is about 21 dB at 6.4 GHz. Experimental results show optical spectral narrowing due to incorporating an electrical band‐limiting filter and some waveform distortion due to bandwidth limitation by the filter. At 10 Gbps transmission, the chromatic dispersion tolerance of the EB‐CSRZ signal is better than that of NRZ‐modulated signal in single‐mode fiber.  相似文献   

2.
利用TOAD实现10 Gbit/s全光非归零码到归零码的转换   总被引:2,自引:4,他引:2  
利用从非归零(NRZ)信号中全光提取的时钟,采用太赫兹光非对称解复用器(TOAD)实现了10 Gbit/s非归零码到归零(RZ)码的码型转换。非归零信号采用半导体光放大器(SOA)进行时钟分量增强并用平面波导阵列(AWG)滤出相应的伪归零(PRZ)信号,然后采用半导体光放大器注入锁模光纤环形激光器进行时钟提取,提取的时钟信号和待转换的非归零信号分别作为抽运光和探测光输入太赫兹光非对称解复用器,在其中进行码型转换。转换后输出的归零信号的质量仅由恢复的时钟信号和非归零信号的质量决定,受太赫兹光非对称解复用器中半导体光放大器增益恢复时间的影响极小。实验测得转换后的归零信号消光比为8.7dB,码型效应非常低,其光谱明显展宽.并且出现谱间隔为0.08nm的多峰结构,与10 Gbit/s的比特速率相对应。该方法对时钟信号的码型效应有一定的容忍度。  相似文献   

3.
We demonstrate that the cross-gain compression (XGC) in a semiconductor optical amplifier can produce effective return to zero (RZ)-to-nonreturn to zero (NRZ) format conversion. This technique is experimentally investigated at 10 and 40 Gbit/s. At 10 Gbit/s, the format adaptation allows for a very high pulsewidth increase, i.e., from 10 to 100 ps. The output 10 Gbit/s NRZ signal is transmitted on metro-like links with no chromatic dispersion compensation.   相似文献   

4.
A self‐pulsating multisection distributed‐feedback laser diode (DFB LD) can potentially realize all‐optical clock extraction. This device generally consists of three sections, two DFB sections and one waveguide section. The most important variable in this device is detuning, which is the relative spectral position between the stop bands of two DFB sections. We fabricated a novel structure in which two gratings were located one over and one under the active layers. Each grating structure was independently defined in processing so that detuning, which is the prerequisite for self‐pulsation, could be easily controlled. Observing various self‐pulsating phenomena in these devices under several detuning conditions, we characterized the phenomena as dispersive Q‐switching, mode beating, and self‐mode‐locking.  相似文献   

5.
全部利用线性啁啾光纤布拉格光栅(CBG)作色散补偿模块和在线通道滤波顺,在2500km超长距离的G.652光纤上实现10Ghps归零码(RZ)、载波抑制归零码(CSRZ)光信号的无电中继传输,并在2080km和2560km处分别对2种信号的传输性能进行了测试。CSRZ在上述2处的功率代价分别为~1dBm和~3dBm(BER-10^12,PRBS=10^23-1),RZ的功率代价分别为~3dBm和~5dBm,验证了在相同系统平台下CSRZ光信号比RZ光信号有更好的性能.  相似文献   

6.
The characteristics of chirped fiber Bragg gratings (CFBGs) are optimized so that the ripple coefficient of the power reflectivity spectrum and group time delay are less than 1 dB and |± 15| ps, group delay is about 2600 ps/nm, polarization module dispersion is very small, PMD<2 ps, -3 dB bandwidth is about 0.35 nm, and insertion loss is about 4-5 dBm. Using dispersion compensation CFBG, a 2500 km-10 Gbps RZ optical signal transmission system on G.652 fiber was successfully demonstrated without an electric regenerator by optimizing dispersion management and loss management. The RZ optical signal was generated through a two-stage modulation method. At 2081 km, the power penalty of transmission is about 3 dB (conditions: RZ signal, BER = 10-12, PRBS = 1023 - 1); At 2560 km, the power penalty is about 5 dB. It is superior to the system using NRZ under the same conditions.  相似文献   

7.
Using a sub‐terahertz (sub‐THz) wave generated using a photonics‐based technology, a high‐speed wireless link operating at up to 10 Gbps is designed and demonstrated for realization of seamless connectivity between wireless and wired networks. The sub‐THz region is focused upon because of the possibility to obtain sufficient bandwidth without interference with the allocated RF bands. To verify the high‐speed wireless link, such dynamic characteristics as the eye diagrams and bit error rate (BER) are measured at up to 10 Gbps for non‐return‐to‐zero pseudorandom binary sequence data. From the measurement results, a receiver sensitivity of –23.5 dBm at is observed without any error corrections when the link distance between the transmitter and receiver is 3 m. Consequently, we hope that our design and experiment results will be helpful in implementing a high‐speed wireless link using a sub‐THz wave.  相似文献   

8.
We fabricated 40 Gb/s front‐end optical receivers using spot‐size converter integrated waveguide photodiodes (SSC‐WGPDs). The fabricated SSC‐WGPD chips showed a high responsivity of approximately 0.8 A/W and a 3 dB bandwidth of approximately 40 GHz. A selective wet‐etching method was first adopted to realize the required width and depth of a tapered waveguide. Two types of electrical pre‐amplifier chips were used in our study. One has higher gain and the other has a broader bandwidth. The 3 dB bandwidths of the higher gain and broader bandwidth modules were about 32 and 42 GHz, respectively. Clear 40 Gb/s non‐return‐to‐zero (NRZ) eye diagrams showed good system applicability of these modules.  相似文献   

9.
Performance degradations in 2.4-Gb/s NRZ (nonreturn to zero) and RZ lightwave systems due to phase-to-intensity-noise conversion between two connectors have been evaluated using computer simulation techniques. Both NRZ and RZ systems have approximately the same penalty if the roundtrip time delay between the two connectors is an exact integer number of bits. If the roundtrip time delay is slightly offset, however, the RZ system penalty is significantly reduced. For example, the RZ system penalty is reduced from 3 dB (roundtrip delay between the two connectors=40 b) to 1.5 dB (roundtrip delay=40.5 b) for two connectors with 8-dB return loss each  相似文献   

10.
全光非归零(NRZ)到归零(RZ)码型转换技术研究进展   总被引:2,自引:1,他引:1  
互联网业务的迅猛增长,促使光网络向大容量高性能方向发展,波分复用(WDM)与时分复用(OTDM)相结合,将是未来超高速大容量光子网络的发展方向。全光非归零(NRZ)到归零(RZ)码型转换技术,是构建这种WDM/OTDM混合网络的核心接口技术之一,它能将分别采用WDM与OTDM技术的不同网络部分有机结合,实现不同调制格式的数据在网络的不同区域之间自由传输。综述了全光NRZ到RZ码型转换技术的最新研究进展,详细分析了每种方案的工作原理,性能特征及关键技术,对比了其优缺点,指出了目前存在的问题,最后对其发展前景进行了展望。  相似文献   

11.
This letter experimentally demonstrates all-optical clock recovery and optical 3R regeneration for a 10-Gb/s nonreturn-to-zero (NRZ) format. The 3R regenerator has achieved 10 000-hop cascadability and 1 000 000-km transmission for a pseudorandom bit sequence (PRBS) of$2 ^7 -1$. A semiconductor-optical-amplifier-based Mach–Zehnder interferometer (SOA-MZI) as an NRZ to pseudoreturn-to-zero converter and a Fabry–PÉrot filter perform the all-optical clock recovery from an NRZ signal. A pair of SOA-MZIs combined with a synchronous modulator provides the 2R regeneration and retiming functions. The cascadablity of the 3R regenerator is investigated in a recirculating loop transmission experiment by eye diagram, bit-error rate, and$Q$-factor measurements. Transmission with the 3R regenerator shows significant performance improvement over that without 3R regeneration. A 100-hop cascadability is also demonstrated for PRBS$2 ^31 -1$, enabling 10 000-km error-free transmission with a low power penalty of 1.2 dB.  相似文献   

12.
An interface for converting non-return to zero (NRZ) and RZ input signals to RZ output signals at 10 Gbit/s based on two all-optical wavelength converters is demonstrated. The interface performs bit-synchronisation and format and wavelength conversion combined with 3R regenerative capabilities, including jitter-to-amplitude modulation transfer suppression  相似文献   

13.
归零码和非归零码传输系统模   总被引:1,自引:1,他引:0  
对单信道40Gbit/s归零码(RZ)和非归零码(NRZ)传输系统进行了实际模拟。考虑了光纤损耗,二阶群速率色散、三阶群速度色散、偏振模色散及放大器噪声对系统影响,采用Q值判别法计算了系统可传输的最大距离,给出了系统眼图。计算结果表明,RZ的最大传输距离大于NRZ码,RZ系统传输性能优于NRZ系统。  相似文献   

14.
Return to zero (RZ) and non-return to zero (NRZ) pulse formats are compared for multimode optical fibre systems. In both cases, the receiver filter bandwidth is optimized assuming a gaussian receiver filter response. In the case of 90 Mbps systems, the optimum bandwidth was found to be 0·6 times the symbol rate and 0·5 times the symbol rate for RZ and NRZ, respectively. Performances were evaluated at a 10-11 bit error rate and NRZ showed a 1·5 dB peak optical power advantage over RZ when there was no band limitation by the fibre. However, NRZ superiority was found to be small when there was a significant fibre bandwidth limitation.  相似文献   

15.
We present a packet-by-packet contention resolution scheme that combines packet detection, optical space switching, and wavelength conversion performed in the optical domain by integrated optical switches. The packet detection circuit provides the control signals required to deflect and wavelength-convert the contending packets so that all the packets are forwarded to the same output without any collision or packet droppings. We demonstrate the compatibility of the scheme with both nonreturn-to-zero (NRZ) and return-to-zero (RZ) modulation formats by recording error-free operation for 10-Gb/s NRZ and 40-Gb/s RZ packet-mode traffic  相似文献   

16.
Simultaneous wavelength conversion and RZ to NRZ format conversion at 40 Gbit/s is demonstrated by a monolithically integrated active Michelson interferometer. Excellent BER performance is reported for the first time for an integrated interferometric converter operating at 40 Gbit/s  相似文献   

17.
基于光纤光参量放大的多通道全光非归零/归零码转换器   总被引:2,自引:0,他引:2  
提出了一种基于光纤光参量放大器(FOPA)的多通道全光非归零码(NRZ)/归零码(RZ)调制格式转换的方案.该方案中,非归零码信号与同步的时钟抽运光共同注入到高非线性光纤(HNLF)中,由高非线性光纤构成的参量放大器把非归零码信号转换为归零码信号,同时不改变信号光的波长.多通道的码型转换器以两路10 Gb/s的非归零码进行了实验论证.转换后的归零码信号的信噪比(SNR)高于7.6 dB,其脉冲宽度约为30 ps,并且具有3dB的消光比(ER)提高.根据多通道码型转换器的实现原理,该码型转换器可以应用于40 Gb/s或更高比特率的多通道码型变换操作.  相似文献   

18.
This paper improves the performance of 60‐GHz wireless optical system including radio over fibre (RoF) and radio over free space optics (RoFSO), based on novel reverse‐parallel (RP) hybrid modulation scheme. This scheme combines the chromatic dispersion compensation technique of parallel modulation with energy efficiency manipulation technique of reverse modulation. Superior functioning of RoFSO is provided with reverse modulation compared with normal modulation. Comparative investigations are performed by loading 60‐GHz RF signal with 2.5 and 10‐Gbps data and modulating it with both reverse and hybrid modulators. Hybrid modulation performed better with improved BER of 10?23 at distance of 51 km for 2.5‐Gbps data compared with reverse modulation with BER of 10?7.  相似文献   

19.
设计了一种基于偏振调制(PolM)实现非归零码(NRZ)信号到归零码(RZ)信号转换的新型码型转换器,并采用光通信模拟软件对其进行了仿真验证。所设计的转换器,首先采用PolM,对输入的NRZ信号进行偏振调制,然后采用射频时钟信号,抑制信号的旁瓣,实现NRZ到RZ的转换。该码型转换器具有RZ信号占空比可控,经码型转换器后各信号波长相同,时间抖动小,转换效率高,成本低优点,可望在高速光通信网络中得到广泛应用。  相似文献   

20.
低功率抽运光纤参量振荡器的时钟提取抖动性能   总被引:1,自引:0,他引:1  
采用两次光调制技术将非归零(NRZ)码数据转换成归零(RZ)码光信号后,利用光纤参量振荡器(FOPO)结构实现了较低光功率抽运下的参量波长转换和时钟提取功能。实验表明,对于波长转换间隔为1.6nm的10Gbit/s时钟提取,优化的输入抽运光功率范围是8~14dBm;当输入信号的幅度抖动和相位抖动分别大于2.28mV和3.5ps时,该时钟提取系统可实现抖动抑制功能,其输入/输出抖动转移曲线斜率约为0.29和0.16。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号