首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The elimination of possible defects is indispensable in making zeolite membranes popular in process industries. A novel counter‐diffusion chemical liquid deposition (CLD) technique is proposed and developed for selective defect‐patching of zeolite membranes. Dodecyltrimethoxysilane (DMS) is employed as the silane coupling agent, forming a protective layer on the membrane surface so that intracrystalline pores can be kept intact in the subsequent reparation step. By using tetraethoxy orthosilicate (TEOS) and (3‐chloropropyl)triethoxysilane (3CP‐TES), co‐hydrolysis and co‐condensation at the organic/aqueous interface fabricate the silsesquioxane/silicate hybrid on macro‐, meso‐ and even microdefects. The silicalite‐1 membrane before and after reparation is characterized using contact‐angle measurements, Fourier transform IR spectroscopy, and electron probe microanalysis. Permporometry is conducted to study the pore‐size distribution of the membrane before and after reparation. It is found that the silsesquioxane/silicate hybrid is only deposited at the pore‐mouth of the defects, and the defects can be plugged to less than 1.3 nm pores after patching. After reparation, the separation factor of a 50/50 n/i‐butane‐gas mixture through the membrane can be increased to 35.8 from 4.4, and the separation factor of a CO2/N2 gas mixture through the membrane can be increased to around 15 from 1, while keeping the two‐thirds CO2 permeation flux of the synthesized membrane.  相似文献   

2.
Deflection of the X-ray mask membrane caused by stepper motion, i.e., changing the mask-to-wafer gap and stepping the wafer parallel to the mask, was evaluated. The effects of film tension, mask configuration and velocity of wafer stage movement on the membrane behavior were examined. The deflection caused by parallel stepping in the proximity gap is very sensitive to the parallelism between the mask and the wafer. The membrane deflection of less than 2 μm and the relaxation time of less than 0.2 sec were observed under the condition of a 20 μm gap and within 0.2 μm/20 mm of mask inclination. It was confirmed that the relaxation time is inversely proportional to the tension of the film. It was also found that the mesa-type mask is capable of reducing the relaxation time to about 30 % less than that of a conventional mask, and that the membrane deflection of the mesa-type mask becomes almost half that of the conventional one. The mesa-type mask is thought to effectively reduce the membrane deflection and the relaxation time.  相似文献   

3.
Synthetic membranes with a high selectivity for demanding molecular separations and high permeance have a large potential for the reduction of energy consumption in separation processes. Herein, for the first time, the fabrication of an ultrathin layered macrocycle membrane for molecular separation in organic solvent nanofiltration using per‐6‐amino‐β‐cyclodextrin as a monomer for membrane manufacturing by interfacial polymerization is reported. Compared to a regular nonfunctionalized cyclodextrin, a higher reactivity is observed, enabling a very fast membrane formation under mild conditions. The formed membrane is composed of a layered structure of polymerized cyclodextrin, which shows high stability in different organic solvents. The membrane exhibits excellent separation performance for organic solvent nanofiltration, both with nonpolar and polar solvents. Most importantly, this new membrane type can discriminate between molecules with nearly identical molecular weights but different shapes. The unmatched high permeance and shape selectivity of the membranes can be attributed to the ultralow thickness, controlled microporosity, as well as the layered macrocycle structure, which makes the membranes promising for high‐performance molecular separation in the chemical and biochemistry industry.  相似文献   

4.
Toxic organic pollutants in the aquatic environment cause severe threats to both humans and the global environment. Thus, the development of robust strategies for detection and removal of these organic pollutants is essential. For this purpose, a multifunctional and recyclable membrane by intercalating gold nanoparticles and graphitic carbon nitride into graphene oxide (GNPs/g‐C3N4/GO) is fabricated. The membranes exhibit not only superior surface enhanced Raman scattering (SERS) activity attributed to high preconcentration ability to analytes through π–π and electrostatic interactions, but also excellent catalytic activity due to the enhanced electron–hole separation efficiency. These outstanding properties allow the membrane to be used for highly sensitive detection of rhodamine 6G with a limit of detection of 5.0 × 10?14m and self‐cleaning by photocatalytic degradation of the adsorbed analytes into inorganic small molecules, thus achieving recyclable SERS application. Furthermore, the excellent SERS activity of the membrane is demonstrated by detection of 4‐chlorophenol at less than nanomolar level and no significant SERS or catalytic activity loss was observed when reusability is tested. These results suggest that the GNPs/g‐C3N4/GO membrane provides a new strategy for eliminating traditional, single‐use SERS substrates, and expands practical SERS application to simultaneous detection and removal of environmental pollutants.  相似文献   

5.
The application of graphene‐based membranes is hindered by their poor stability under practical hydrodynamic conditions. Here, nanocarbon architectures are designed by intercalating surface‐functionalized, small‐diameter, multi‐walled carbon nanotubes (MWCNTs) into reduced graphene oxide (rGO) sheets to create highly stable membranes with improved water permeability and enhanced membrane selectivity. With the intercalation of 10 nm diameter MWCNTs, the water permeability reaches 52.7 L m?2 h?1 bar?1, which is 4.8 times that of pristine rGO membrane and five to ten times higher than most commercial nanofiltration membranes. The membrane also attains almost 100% rejection for three organic dyes of different charges. More importantly, the membrane can endure a turbulent hydrodynamic flow with cross‐flow rates up to 2000 mL min?1 and a Reynolds number of 4667. Physicochemical characterization reveals that the inner graphitic walls of the MWCNTs can serve as spacers, while nanoscale rGO foliates on the outer walls interconnect with the assimilated rGO sheets to instill superior membrane stability. In contrast, intercalating with single‐walled nanotubes fails to reproduce such stability. Overall, this nanoarchitectured design is highly versatile in creating both graphene‐rich and CNT‐rich all‐carbon membranes with engineered nanochannels, and is regarded as a general approach in obtaining stable membranes for realizing practical applications of graphene‐based membranes.  相似文献   

6.
It is shown that the photorefractive (PR) performance of polymer composites based on poly(N‐vinylcarbazole) can be improved when samples are subjected to an electric field for a certain time, i.e. conditioned, previous to the PR characterization. It is also found that for conditioned samples the addition of an organic ionic liquid to the PR composition allows to obtain PR effect without the need of using a sensitizer. The typical electric field treatment time at room temperature and at a field of 20 V µm?1 is 20 min. This procedure leads to a decrease of dark conductivity and an increase of photoconductivity, and consequently an increase of conductivity contrast. This results in higher PR two‐beam‐coupling gain coefficients and shorter response times, particularly at low fields. Dependencies of the process dynamics on impurities, applied field strength, temperature and the presence of an organic ionic liquid are examined in detail. It is remarkable the significant increase of the PR gain coefficients, and more drastically of the net gain coefficients, observed at low fields (<55 V µm?1), when an ionic organic liquid such as benzalkonium chloride is added to unsensitized conditioned PR composites. These findings open a new route to improve the PR performance, not only of PVK‐based composites, but also of other types of organic materials, the main advantage being that no sensitizer is needed.  相似文献   

7.
王若秋  张志宇  薛栋林  张学军 《红外与激光工程》2017,46(9):920001-0920001(8)
为满足空间成像领域对大口径、轻量化、高衍射效率光学衍射元件的需求,研究了薄膜衍射元件微结构设计及制作工艺。应用Zemax光学软件设计了320 mm口径,F/#100的四台阶薄膜菲涅尔衍射元件,并利用Matlab软件将连续位相结构转化为离散化台阶分布。研究了薄膜菲涅尔衍射元件的制作技术,选用透明聚酰亚胺薄膜作为基底材料,以石英玻璃作为复制模板,通过多次旋涂的方式实现了厚度为20 m的衍射薄膜制作。应用Solidworks软件设计并加工薄膜支撑装置。测量复制基板及薄膜对应区域的微结构,实验结果表明条纹线宽转移偏差小于1.3%,台阶深度偏差小于8.6%。搭建光路测试在波长632.8 nm处衍射效率平均值为71.5%,达到了理论值的88%。实验结果表明,制作的薄膜重量轻,复制精度高,并且具有高衍射效率,满足空间望远镜的应用要求。  相似文献   

8.
Membranes with outstanding performance that are applicable in harsh environments are needed to broaden the current range of organic dehydration applications using pervaporation. Here, well‐intergrown UiO‐66 metal‐organic framework membranes fabricated on prestructured yttria‐stabilized zirconia hollow fibers are reported via controlled solvothermal synthesis. On the basis of the adsorption–diffusion mechanism, the membranes provide a very high flux of up to ca. 6.0 kg m?2 h?1 and excellent separation factor (>45 000) for separating water from i ‐butanol (next‐generation biofuel), furfural (promising biochemical), and tetrahydrofuran (typical organic). This performance, in terms of separation factor, is one to two orders of magnitude higher than that of commercially available polymeric and silica membranes with equivalent flux. It is comparable to the performance of commercial zeolite NaA membranes. Additionally, the membrane remains robust during a pervaporation stability test (≈300 h), including exposure to harsh environments (e.g., boiling benzene, boiling water, and sulfuric acid) where some commercial membranes (e.g., zeolite NaA membranes) cannot survive.  相似文献   

9.
A nanoscopic supramolecular aggregate is constructed from perylene bisimide‐bridged bis‐(permethyl‐β‐cyclodextrins) 1 via π–π stacking interactions. Its self‐assembly behavior in organic and aqueous solutions is investigated by UV–Vis, fluorescence, and 1H NMR spectroscopy. Transmission electron microscopy and scanning electron microscopy images show the 1D nanorod aggregation of 1 , which is birefringent under crossed polarizer conditions and strongly fluorescent as depicted in the fluorescence microscopy image. X‐ray powder diffraction measurements indicate that 1 forms a well‐ordered crystalline arrangement with a π–π stacking distance of 4.02 Å. Furthermore, the solid‐state fluorescence sensing is explored by utilizing the poly(vinylidene fluoride) membrane‐embedded 1 , giving that 1 , as a novel vapor detecting material, can probe several kinds of volatile organic compounds and, especially, exhibits high sensitivity to organic amines.  相似文献   

10.
Artificial cells or cell mimics have drawn significant attention in cell biology and material science in the last decade and its development will provide a powerful toolbox for studying the origin of life and pave the way for novel biomedical applications. Artificial cells and their subcompartments are typically constructed from a semipermeable membrane composed of liposomes, polymersomes, hydrogels, or simply aqueous droplets enclosing bioactive molecules to perform cellular‐mimicking activities such as compartmentalization, communication, metabolism, or reproduction. Despite the rapid progress, concerns regarding their physical stability (e.g., thermal or mechanical) and tunability in membrane permeability have significantly hindered artificial cells systems in real‐life applications. In addition, developing a facile and versatile system that can mimic multiple cellular tasks is advantageous. Here, an ultrastable, multifunctional and stimulus‐responsive artificial cell system is reported. Constructed from metal‐phenolic network membranes enclosing enzyme‐containing metal‐organic frameworks as organelles, the bionic cell system can mimic multiple cellular tasks including molecular transport regulation, cell metabolism, communication and programmed degradation, and significantly extends its stability range across various chemical and physical conditions. It is believed that the development of such responsive cell mimics will have significant potentials for studying cellular reactions and have future applications in biosensing and drug delivery.  相似文献   

11.
As biochemical and functional studies of membrane protein remain a challenge, there is growing interest in the application of nanotechnology to solve the difficulties of developing membrane protein therapeutics. Exosome, composed of lipid bilayer enclosed nanosized extracellular vesicles, is a successful platform for providing a native membrane composition. This study reports an enzymatic exosome, which harbors native PH20 hyaluronidase (Exo‐PH20), which is able to penetrate deeply into tumor foci via hyaluronan degradation, allowing tumor growth inhibition and increased T cell infiltration into the tumor. This exosome‐based strategy is developed to overcome the immunosuppressive and anticancer therapy‐resistant tumor microenvironment, which is characterized by an overly accumulated extracellular matrix. Notably, this engineered exosome with the native glycosylphosphatidylinositol‐anchored form of hyaluronidase has a higher enzymatic activity than a truncated form of the recombinant protein. In addition, the exosome‐mediated codelivery of PH20 hyaluronidase and a chemotherapeutic (doxorubicin) efficiently inhibits tumor growth. This exosome is designed to degrade hyaluronan, thereby augmenting nanoparticle penetration and drug diffusion. The results thus show that this is a promising exosome‐based platform that harbors not only a membrane‐associated enzyme with high activity but also therapeutic payloads.  相似文献   

12.
Nonsolvent induced phase separation (NIPS) is the most common approach to produce polymeric membranes. Unfortunately, NIPS relies heavily on aprotic organic solvents like N‐methyl‐pyrrolidone. These solvents are unsustainable, repro‐toxic for humans and are therefore becoming increasingly restricted within the European Union. A new and sustainable method, aqueous phase separation (APS), is reported that eliminates the use of organic solvents. A homogeneous solution of two polyelectrolytes, the strong polyanion poly(sodium 4‐styrenesulfonate) (PSS) and the weak polycation poly(allylamine hydrochloride) (PAH), is prepared at high pH, where PAH is uncharged. Immersing a film of this solution in a low pH bath charges the PAH and results in a controlled precipitation, forming a porous water‐insoluble polyelectrolyte complex, a membrane. Pore sizes can be tuned from micrometers to just a few nanometers, and even to dense films, simply by tuning the polyelectrolyte concentrations, molecular weights, and by changing the salinity of the bath. This leads to excellent examples of microfiltration, ultrafiltration, and nanofiltration membranes. Polyelectrolyte complexation induced APS is a viable and sustainable approach to membrane production that provides excellent control over membrane properties and even allows new types of separations.  相似文献   

13.
In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p‐i‐n‐metal‐oxide‐semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode‐based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write‐read‐erase‐read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady‐state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems.  相似文献   

14.
In this contribution, it is shown that the method of laser‐desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) is a powerful technique for analyzing complete organic devices, such as organic light‐emitting diodes (OLEDs) or organic solar cells. LDI‐TOF‐MS has the potential to analyze fully processed organic devices without special pretreatment such as dissolving the device, peeling off the metal cathode, or using additional matrix materials. Thus, devices may be analysed as they are with a minimum of measurement artefacts. It is demonstrated that the method allows an analysis of complex organic multilayer devices, their composition, and incorporated impurities. It even allows possible electrochemical reaction products caused by device degradation to be analyzed. Thus, LDI‐TOF‐MS has major advantages compared to measurements of dissolved samples. As an example, the identification of all of the materials used in a complete OLED is shown. Furthermore, a detailed chemical analysis of long‐term driven OLEDs, including the detection of degradation products, is presented. From these data, several degradation mechanisms can be distinguished.  相似文献   

15.
Extremely long and thin nanocomposite fibers are prepared by oxidative polymerization of pyrrole (or aniline) around the surfaces of copper hydroxide nanostrands. The individual nanostrands of 2.5 nm are uniformly coated with a polypyrrole layer of 3 to 4 nm, resulting in hybrid core/shell fibers of about 10 nm in diameter and a few micrometers in length, as confirmed by high‐resolution electron microscopy. The as‐prepared nanocomposite fibers are dispersive in water and can be converted into thin free‐standing films by simply filtering a small volume of the aqueous solution using a polycarbonate membrane filter. The films covering the submicrometer pores of the membrane filter have a thickness of a few tens of nanometers, and provide a mechanically stable nanofiber network with abundant pores of a few nanometers. The network is stable in acidic and basic media, and can be used for protein separation under pressures of at least 90 kPa. The permeation rates of cytochrome c, myoglobin, and ferritin were examined by changing the pH around their isoelectric points. It is seen that the nanofibrous free‐standing films on the polycarbonate membrane filter show clear size selectivity for the proteins, retaining extremely high filtration rates for water. We demonstrate herein durable mesoporous separation membranes made of organic–inorganic nanocomposite fibers and their outstanding performance.  相似文献   

16.
Nanosphere lithography is used to process nanopore‐structured electrodes, which are applied into the fabrication of bottom‐gate, bottom‐contact configuration organic field effect transistors (OFETs) to serve as source/drain elecrodes. The introduction of this nanopore‐structure electrode facilitates the forming of nanopore‐structure pentacene layers with small grain boundaries at the electrode interface, and then reduces the contact resistance, contact‐induces the growth of pentacene and accordingly improves the mobility of charge carriers in the OFETs about 20 times as compared with results in literature through enhancing the charge carrier injection. It is believed that this structure of electrode is a valuable approach for improving organic filed effect transistors.  相似文献   

17.
Simple bottom‐up fabrication processes for molecular self‐assembly have been developed for the construction of higher‐order structures using organic materials, and have contributed to maximization of the potential of organic materials in chemical and bioengineering. However, their application to organic thin‐film devices such as organic light‐emitting diodes have not been widely considered because simple fabrication of a solid film containing an internal self‐assembly structure has been regarded as difficult. Here it is shown that the intermolecular C–H···N hydrogen bonds can be simply formed even in vacuum‐deposited organic films having flat interfaces. By designing the molecules containing pyridine rings properly for the intermolecular interaction, one can control the molecular stacking induced by the intermolecular hydrogen bonds. It is also demonstrated that the molecular stacking contributes to the high carrier mobility of the film. These findings provide new guidelines to improve the performance of organic optoelectronic devices and open up the possibilities for further development of organic devices with higher‐order structures.  相似文献   

18.
Membranes have seen a growing role in mitigating the extensive energy used for gas separations. Further expanding their effectiveness in reducing the energy penalty requires a fast separation process via a facile technique readily integrated with industrial membrane formation platforms, which has remained a challenge. Here, an ultrapermeable polyimide/metal‐organic framework (MOF) hybrid membrane is reported, enabling ultrafast gas separations for multiple applications (e.g., CO2 capture and hydrogen regeneration) while offering synthetic enhanced compatibility with the current membrane manufacturing processes. The membranes demonstrate a CO2 and H2 permeability of 2494 and 2932 Barrers, respectively, with a CO2/CH4, H2/CH4, and H2/N2 selectivity of 29.3, 34.4, and 23.8, respectively, considerably surpassing the current Robeson permeability–selectivity upper bounds. At a MOF loading of 55 wt%, the membranes display a record‐high 16‐fold enhancement of H2 permeability comparing with the neat polymer. With mild membrane processing conditions (e.g., a heating temperature less than 80 °C) and a performance continuously exceeding Robeson upper bounds for over 5300 h, the membranes exhibit enhanced compatibility with state‐of‐the‐art membrane manufacturing processes. This performance results from intimate interactions between the polymer and MOFs via extensive, direct hydrogen bonding. This design approach offers a new route to ultraproductive membrane materials for energy‐efficient gas separations.  相似文献   

19.
Here, the results of a study of the mechanism of bio‐enabled surface‐mediated titania nanoparticle synthesis with assistance of polyelectrolyte surfaces are reported. By applying atomic force microscopy, surface force spectroscopy, circular dichroism, and in situ attenuated total reflection Fourier‐transform infrared spectroscopy, structural changes of rSilC‐silaffin upon its adsorption to polyelectrolyte surfaces prior to and during titania nanoparticle growth are revealed. It is demonstrated that the adhesion of rSilC‐silaffin onto polyelectrolyte surfaces results in its reorganization from a random‐coil conformation in solution into a mixed secondary structure with both random coil and β‐sheet structures presented. Moreover, the protein forms a continuous molecularly thin layer with well‐defined monodisperse nanodomains of lateral dimensions below 20 nm. It is also shown that rSilC embedded inside the polylelectrolyte matrix preserves its titania formation activity. It is suggested that the surface‐mediated, bio‐enabled synthesis of nanostructured materials might be useful to develop general procedures for controlled growth of inorganic nanomaterials on reactive organic surfaces, which opens new perspectives in the design of tailored, in situ grown, hybrid inorganic–organic nanomaterials.  相似文献   

20.
High spin polarization materials or spin filters are key components in spintronics, a niche subfield of electronics where carrier spins play a functional role. Carrier transmission through these materials is “spin selective,” that is, these materials are able to discriminate between “up” and “down” spins. Common spin filters include transition metal ferromagnets and their alloys, with typical spin selectivity (or, polarization) of ≈50% or less. Here carrier transport is considered in an archetypical one‐dimensional molecular hybrid in which a single wall carbon nanotube (SWCNT) is wrapped around by single stranded deoxyribonucleic acid (ssDNA). By magnetoresistance measurements it is shown that this system can act as a spin filter with maximum spin polarization approaching ≈74% at low temperatures, significantly larger than transition metals under comparable conditions. Inversion asymmetric helicoidal potential of the charged ssDNA backbone induces a Rashba spin‐orbit interaction in the SWCNT channel and polarizes carrier spins. The results are consistent with recent theoretical work that predicted spin dependent conductance in ssDNA‐SWCNT hybrid. Ability to generate highly spin polarized carriers using molecular functionalization can lead to magnet‐less and contact‐less spintronic devices in the future. This can eliminate the conductivity mismatch problem and open new directions for research in organic spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号