首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用UV/Fenton氧化处理磺化泥浆体系钻井废水,考察了H2O2和Fe2 物质的量比、H2O2投加量和pH值等对废水处理的影响.结果表明,UV/Fenton氧化不仅能有效去除钻井废水中的有机污染物,还可提高钻井废水的可生化性.随着H202投加量的增加,有机污染物去除率也相应的提高.当H2O2投加量为理论值的1.5倍(1.5 Qth)时,反应180 min,化学需氧量(COD)可从586 mg/L降到90 mg/L,去除率达到84.6%,出水COD符合国家一级排放标准;当H2O2投加量为0.6 Qth时,反应30 min,生化需氧量和化学需氧量的比值(BOD/COD)可从0.03提高到0.45.增大Fe2 投加量可提高有机污染物降解速率,但不能增加COD的去除率.反应适宜的pH值为3~5.建立了有机污染物降解动力学模型,模型和实验结果符合较好.  相似文献   

2.
为研究Fenton试剂氧化降解焦化废水的影响特性及动力学机理,采用小试烧杯实验考察初始COD、H2O2投加量、Fe2+投加量和反应温度等因素对处理效果的影响。结果表明,原水COD为260 mg/L、H2O2投加量为666mg/L、Fe2+投加量为200 mg/L、温度为298 K时,COD去除率达到89.53%;反应初始阶段COD氧化降解的表观反应动力学模型与实验数据得到较好的拟合,因此该动力学模型能较好地预测Fenton试剂对焦化废水的氧化降解情况;反应总级数为2.001 7,其中H2O2的反应分级数(0.568 5)高于Fe2+的反应分级数(0.494 0),说明Fenton氧化降解COD过程中H2O2浓度的影响比Fe2+的大;较低的反应活化能说明反应较易进行。  相似文献   

3.
采用超声波协同Fenton氧化技术对HMX生产废水进行处理,考察了超声波频率及功率、Fenton试剂的投料量、废水的pH值、反应初始温度等参数对HMX生产废水中污染物降解的影响。结果表明,反应初始温度及废水的pH值对降解结果的影响较大。在超声波频率为45Hz、功率为5kW/m3、H2O2与Fe2+投料量分别为0.235mol和0.023mol,即n(H2O2)∶n(Fe2+)=10∶1,反应初始温度30℃条件下,100mL HMX废水的COD去除率达到80%以上;在H2O2投料量较少时超声波协同效应的优势明显,H2O2与Fe2+摩尔比越低,超声波协同效应越显著,比单独使用Fenton试剂处理的效果好;当H2O2与Fe2+摩尔比高于10∶1时,超声波的协同效应几乎消失。  相似文献   

4.
用Fenton氧化技术研究了降解HMX废水中有机物的工艺及氧化反应动力学。结果表明,适宜的降解工艺条件为:H2O2投加量2mol/L,H2O2与Fe2+摩尔比为40∶1,pH值为3,反应温度20℃,反应时间1.5h。在上述条件下HMX废水的COD去除率为68.5%。在研究的温度范围内,用Fenton氧化法降解HMX废水中有机物的氧化反应为一级反应,反应的活化能和指前因子分别为7.03kJ/mol和0.067 7min-1。  相似文献   

5.
UV/Fenton氧化法对苯酚氧化效果的实验研究   总被引:4,自引:0,他引:4  
尹宏生  张婷  刘佳媛 《化工科技》2010,18(1):10-12,51
研究UV/Fenton氧化法中各个因素对降解水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件。保持UV/Fenton体系的基准条件不变,通过改变H2O2浓度、n(Fe2+)∶n(H2O2)、废水初始pH值等实验条件,考察这些因素对UV/Fenton法处理苯酚废水效果的影响。结果表明:UV/Fen-ton氧化法对苯酚废水有较好的去除效果和较高的反应速率。当废水初始pH值为3.0时,经30 min的反应,苯酚去除率达到99%,COD去除率达到86%。但是苯酚废水COD去除率滞后于苯酚去除率。UV/Fenton法能够在较短的时间内去除苯酚和COD,H2O2浓度、n(Fe2+)∶n(H2O2)对处理效果影响较大,H2O2浓度决定苯酚去除率和COD去除率,而n(Fe2+)∶n(H2O2)是影响降解速率的主导因素。  相似文献   

6.
催化氧化处理高浓度有机废水的研究与应用   总被引:2,自引:0,他引:2  
冯爱红  迟大明 《应用化工》2011,40(5):847-849,852
采用Fenton催化氧化法处理印制板高浓度有机废水,实验表明,最佳工艺参数是:反应pH=3.0,H2O2/COD=2.5(质量比),Fe2+/H2O2=0.3(质量比),反应时间1h,可氧化降解70%以上的COD。  相似文献   

7.
实验采用Fenton氧化法处理炼油汽提净化水,考察了H2O2的添加量、Fe SO4·7H2O添加量、p H、反应时间对炼油汽提净化水中COD的影响。实验结果表明:炼油汽提净化水为200 m L(初始COD值为1883 mg·L-1)、体系的p H为4、Fe SO4·7H2O添加量为0.3 g、H2O2/COD质量比为2.16、反应时间为60 min条件下,COD的去除率最高为86%,采用铁锰双金属催化剂的Fenton氧化法可以提高COD的去除率,COD的去除率由86%(Fe SO4·7H2O做催化剂)提高到92%(Fe-Mn双金属催化剂)。  相似文献   

8.
采用Fenton催化氧化体系处理了聚四氟乙烯(PTFE)分散液生产中的COD高达8 g/L的乳液废水,探讨了Fenton氧化阶段的适宜反应条件。结果表明,当温度65℃、H2O2加入量60 kg/t废水、初始p H为2、H2O2、Fe2+的质量比为60、反应时间15 min时,处理后的废水COD小于0.8 g/L,COD平均去除率可达90%,符合污水处理厂COD小于1 g/L的纳管标准。  相似文献   

9.
考察了Fe2+投加量、H2O2投加量和溶液初始pH等因素对Fenton氧化降解H酸效果的影响。H2O2投加量(n(H2O2)/m(COD))为0.064 mmol/mg、H2O2与Fe2+摩尔比为(20~40):1和初始pH大于3时,反应180 min,COD及TOC去除率分别为约80%和40%。Fenton氧化降解H酸反应迅速,在Fenton试剂投加的瞬间,H酸分子结构即被破坏。工业生产H酸结晶母液废水的Fenton氧化实验表明,剧烈的反应产生的高温提升了反应效果,该高含量母液废水反应后具有更高的COD和TOC去除率。  相似文献   

10.
以难降解的青霉素废水为研究对象,采用Fenton氧化法对青霉素生化出水进行深度处理,探讨废水初始pH、H2O2投加量、Fe2+/H2O2质量比、反应时间、反应温度、絮凝pH值等因素对难降解污染物去除效果的影响。结果表明,通过对实验条件的优化,青霉素废水的COD去除率可达96%。  相似文献   

11.
采用Fenton氧化对焦化废水进行了深度处理。结果表明:Fenton氧化反应迅速,可迅速降低焦化废水生化出水的COD;H2O2和Fe2+的投加量对Fenton氧化具有明显的影响;pH=3时反应体系具有最佳的COD去除效果。在H2O2投加量为1.994 mL/L,FeSO4.7H2O投加量为0.543 g/L,pH=3,温度为35℃的条件下,反应出水COD低于100 mg/L,去除率可达72.7%;Fenton氧化可有效去除生化出水中的难降解有机物。实验结果表明Fenton氧化是深度处理焦化废水的有效工艺。  相似文献   

12.
采用Fenton试剂氧化法作为液晶显示屏清洗废水的物化预处理工艺,探讨了H2O2投加量、反应初始p H、反应时间以及H2O2与Fe SO4的投加量比对Fenton试剂氧化效果的影响。结果表明,Fenton试剂对该废水预处理的优化反应条件为:质量分数30%的双氧水投加量1.0 m L/L,反应初始p H为3,反应时间180 min,n(H2O2):n(Fe SO4)为5:1。经过Fenton试剂氧化预处理后的废水通过水解酸化-好氧生化处理后,COD和TOC的生化去除率分别达到94%和93%以上;且经过Fenton试剂氧化预处理后,水解酸化-好氧生化系统的COD容积负荷NV由原来直接生化的0.3~0.35 kg/(m3·d)提高至0.45~0.55 kg/(m3·d)。  相似文献   

13.
US/H2O2系统协同降解苯酚的动力学研究   总被引:4,自引:2,他引:4  
超声波 过氧化氢 (US H2 O2 )复合氧化过程在废水处理领域有很广泛的应用前景 ,但在动力学方面的研究很少 ,为此研究了US H2 O2 工艺降解苯酚的动力学 .结果表明 ,苯酚在单独超声波辐射 (US)、过氧化氢 (H2 O2 )氧化和超声波 过氧化氢 (US H2 O2 )协同下的降解均符合表观一级动力学 .在单独的超声波辐射或者过氧化氢氧化下苯酚去除率很小 ,而在复合氧化过程US H2 O2 工艺中有显著的提高 ,表明协同效应存在 .苯酚去除的速率常数增强因子可达到 6 90 4 .进一步从US H2 O2 系统中存在US、H2 O2 和羟基自由基 (·OH) 3部分协同作用的降解机理 ,推导出了简化的机理动力学模型 ,很好地反应过氧化氢浓度过量条件下苯酚的降解 .  相似文献   

14.
以自制Fe2O3-Ce O2/γ-Al2O3为催化剂,采用催化湿式过氧化氢氧化法(CWPO)预处理有机磷农药废水,通过单因素和正交试验研究了过氧化氢投加量、起始p H、反应温度和反应时间对COD的去除效果及影响规律。结果表明,反应最优条件为H2O2投加量2 m L、起始p H=5、反应温度80℃、反应时间40 min,在此条件下COD的去除率可达85.8%,可生化性提高到B/C=0.43。运用一级动力学模型和Arrhenius经验公式,建立了催化湿式过氧化氢氧化降解COD的动力学方程。  相似文献   

15.
超声波协同Fenton试剂降解糖蜜酒精废水的工艺   总被引:4,自引:0,他引:4  
采用超声波为辅助条件,以废水的COD去除率、脱色率为评价指标,考察了Fenton试剂对糖蜜酒精废水催化降解特性.实验结果表明,Fenton试剂对糖蜜酒精废水具有良好的处理效果,超声波与Fenton试剂之间存在着协同作用.通过正交实验得出的最佳降解工艺条件为:H2O2用量10 mL/L,硫酸亚铁0.50 g/L,废水稀释倍数40倍,超声波功率200 W,反应时间30 min,废水的COD去除率达到69%,色度降解率达到74%.  相似文献   

16.
李亚焕  王娇  刘冰 《化学工程师》2011,(8):33-35,45
本文采用Fenton氧化法处理浓度为1.5g.L-1的聚乙烯醇(PVA)模拟废水,研究了反应时间、溶液的初始pH值、H2O2投加量、H2O2/Fe2+投加比和反应温度等因素对PVA氧化降解的影响。结果表明,在pH值为4、H2O2/Fe2+的摩尔比为10∶1,温度40℃,时间为40min,H2O2投加量为7g/100mL时,PVA的降解率可达93.28%。  相似文献   

17.
采用Uv/Fenton试剂氧化法对模拟青霉素废水进行降解研究。探讨了反应初始p H值、反应温度、反应时间、过氧化氢的用量以及过氧化氢和铁离子浓度比等影响因素对青霉素废水COD去除率的影响。实验结果表明,当废水的初始p H值为5.0,Fe2+/H2O2浓度比为1:20,过氧化氢投加量为0.3%,反应时间为30 min,紫外光照射波长为185 nm的条件下,青霉素废水的COD去除率最高可以达到91%。  相似文献   

18.
研究在酸性环境下,超声协同Fenton技术对废水有机物的去除,同时考察p H、H2O2浓度、Fe2+浓度、超声功率和反应时间等因素对降解生化后发酵制药废水的影响。结果表明:Fenton试剂辅以超声作用后,CODCr去除效果优于单独超声、单独Fenton法;同时确定了超声-Fenton氧化法降解生化后发酵制药废水最佳工艺参数:在超声波功率为75 W、溶液p H为4.0、H2O2浓度为4.70 mmol/L,Fe2+浓度为6.50 mmol/L,反应时间为30 min条件下,CODCr最高去除率可达到71.5%,色度去除率可达到97%。  相似文献   

19.
利用超声协同Fenton氧化法,对化学需氧量(COD)为9 415mg/L的HMX生产废水进行了超声协同Fenton氧化法降解实验,用最小二乘法对实验数据进行了拟合回归。结果表明,在反应1h内,降解过程表现为一级动力学反应,且COD去除率随超声频率、初始废液pH值和反应温度的增大先增大后减小,随超声强度的增大而增大。在实际操作过程中,超声频率为35kHz,pH值为3,超声强度为1.5kW,反应温度为25℃时废水降解较宜,此时反应活化能为5.63kJ/mol,反应速率表达式为k=0.083 5exp(-5.63/RT)。超声波与Fenton试剂间成正协同性,增强因子(f)为1.275。  相似文献   

20.
微波强化Fenton氧化法降解水中阴离子表面活性剂的研究   总被引:3,自引:0,他引:3  
采用微波/Fenton氧化法降解水中阴离子表面活性剂十二烷基苯磺酸钠(SDBS).比较了微波辐射、Fenton氧化和微波/Fenton氧化3种方法对SDBS的降解效果;考察了H2O2与Fe2+的摩尔比、Fenton试剂投加量、微波功率、溶液pH、反应时间等因素对SDBS降解效果的影响.结果表明,微波辐射可以强化Fenton试剂对SDBS的氧化作用,明显提高SDBS的降解效率,显著缩短反应时间,并能促进SDBS的矿质化,提高TOC去除率;微波辐射与Fenton氧化对SDBS的矿质化具有明显的协同效应.微波/Fenton氧化法降解SDBS的最佳工艺条件为:pH为3,n(H2O2):n(Fe2+)为195,Fenton试剂投加量为140mmol·L-1,微波功率为500W,反应时间为10min.在此工艺条件下,SDBS和TOC去除率分别可达99%和68%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号