首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
贺文伟  孟桥  张翼  唐凯 《半导体学报》2014,35(8):085004-5
本文基于90nm CMOS工艺设计了一个单通道 2GSPS, 8-bit 折叠插值模数转换器。本设计采用折叠级联结构,通过在折叠电路间增加级间采样保持器的方法增加量化时间。电路中采用了数字前台辅助校正技术以提高信号的线性度。后仿结果表明,在奈奎斯特采样频率,该ADC的微分非线性DNL<±0.3LSB,积分非线性INL<±0.25LSB,有效位数达到7.338比特。包括焊盘在内的整体芯片面积为880×880 μm2。电路在1.2V 电源电压下功耗为210mW.  相似文献   

2.
This paper describes a 1.2 V 12 b 60 MS/s CMOS analog front‐end (AFE) employing low‐power and flexible design techniques for image signal processing. An op‐amp preset technique and programmable capacitor array scheme are used in a variable gain amplifier to reduce the power consumption with a small area of the AFE. A pipelined analog‐to‐digital converter with variable resolution and a clock detector provide operation flexibility with regard to resolution and speed. The AFE is fabricated in a 0.13 µm CMOS process and shows a gain error of 0.68 LSB with 0.0352 dB gain steps and a differential/integral nonlinearity of 0.64/1.58 LSB. The signal‐to‐noise ratio of the AFE is 59.7 dB at a 60 MHz sampling frequency. The AFE occupies 1.73 mm2 and dissipates 64 mW from a 1.2 V supply. Also, the performance of the proposed AFE is demonstrated by an implementation of an image signal processing platform for digital camcorders.  相似文献   

3.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

4.
A 12-b analog-to-digital converter (ADC) is optimized for spurious-free dynamic range (SFDR) performance at low supply voltage and suitable for use in modern wireless base stations. The 6-7-b two-stage pipeline ADC uses a bootstrap circuit to linearize the sampling switch of an on-chip sample-and-hold (S/H) and achieves over 80-dB SFDR for signal frequencies up to 75 MHz at 50 MSample/s (MSPS) without trimming, calibration, or dithering. INL is 1.3 LSB, differential nonlinearity (DNL) is 0.8 LSB. The 6-b and 7-b flash sub-ADCs are implemented efficiently using offset averaging and analog folding. In 0.6-μm CMOS, the 16-mm2 ADC dissipates 850 mW  相似文献   

5.
This paper presents a 10-bit 100-MSample/s analog-to-digital(A/D) converter with pipelined folding architecture.The linearity is improved by using an offset cancellation technique and a resistive averaging interpolation network.Cascading alleviates the wide bandwidth requirement of the folding amplifier and distributed interstage track/hold amplifiers are used to realize the pipeline technique for obtaining high resolution.In SMIC 0.18μm CMOS,the A/D converter is measured as follows:the peak integral nonlinearity and differential nonlinearity are±0.48 LSB and±0.33 LSB,respectively.Input range is 1.0 VP-P with a 2.29 mm2 active area.At 20 MHz input @ 100 MHz sample clock,9.59 effective number of bits,59.5 dB of the signal-to-noise-and-distortion ratio and 82.49 dB of the spurious-free dynamic range are achieved.The dissipation power is only 95 mW with a 1.8 V power supply.  相似文献   

6.
An 8-b 100-MSample/s CMOS pipelined folding ADC   总被引:1,自引:0,他引:1  
Although cascading reduces the number of folders used in folding analog-to-digital converters (ADCs), it demands wider bandwidth. The pipelining scheme proposed in this work greatly alleviates the wide bandwidth requirement of the folding amplifier. The pipelining is implemented with simple differential-pair folders. The key idea is to use odd multiples of folders with distributed interstage track/holds cooperatively with an algorithm for coding and digital error correction for the nonbinary system. The pipelined folding ADC prototyped using 0.5-μm CMOS exhibits a differential nonlinearity (DNL) of ±0.4 LSB and an integral nonlinearity (INL) of ±1.3 LSB at 100 MSample/s. The chip occupies 1.4 mm×1.2 mm in active area and consumes 165 mW at 5 V  相似文献   

7.
设计了一个14位刷新频率达400MHz,用于高速频率合成器的低功耗嵌入式数模转换器。该数模转换器采用5+4+5分段式编码结构,其电流源控制开关输出驱动级采用归零编码以提高DAC动态特性。该数模转换器核采用0.18μm1P6M混合信号CMOS工艺实现,整个模块面积仅为1.1mm×0.87mm。测试结果表明,该DAC模块的微分非线性误差是-0.9~+0.5LSB,积分非线性误差是-1.4~+1.3LSB,在400MHz工作频率下,输出信号频率为80MHz时的无杂散动态范围为76.47dB,并且功耗仅为107.2mW。  相似文献   

8.
邓红辉  汪江  周福祥 《微电子学》2017,47(3):298-303
基于SMIC 65 nm CMOS工艺,设计了一种10位10 MS/s逐次逼近型模数转换器(SAR ADC)。采用全差分的R-C组合式DAC网络结构进行设计,提高了共模噪声抑制能力和转换精度。与全电容结构相比,R-C组合式DAC网络结构有效减小了版图面积。DAC中各开关的导通采用对称的开关时序,使比较器差分输入的共模电平保持为固定值,降低了比较器的失调电压,提高了ADC的线性度。在2.5 V模拟电源电压和1.2 V数字电源电压下,使用Spectre进行仿真验证,测得DNL为0.5 LSB,INL为0.8 LSB;在输入信号频率为4.990 2 MHz,采样频率为10 MHz的条件下,测得电路的有效位数为9.63位,FOM为0.04 pJ/conv。  相似文献   

9.
针对OFDM-UWB标准超宽带收发系统中数模转换器(DAC)的要求,设计了一款8位650MHz采样速率电流驱动型数模转换器(Current-steering DAC)。为了提高静态性能,本设计通过蒙特卡洛分析确定电流源最佳尺寸并采用双中心版图技术;为了提高动态性能,文中采用共源共栅电流源结构,对开关电压降摆幅处理并在数字输入端前加入插值滤波器。测试结果表明,DAC的积分非线性(INL)和差分非线性(DNL)分别为0.3LSB和0.41LSB,650MHz转换速率下带内奈奎斯特无杂散动态范围(SFDR)为41dB。整体面积为1.8cm×1.3cm,其中DAC面积为0.8cm×0.8cm。  相似文献   

10.
Two key concepts of pipelining and background offset trimming are applied to demonstrate a 13-b 40-MSamples/s CMOS analog-to-digital converter (ADC) based on the basic folding and interpolation architecture. Folding amplifier stages made of simple differential pairs are pipelined using distributed interstage track-and-holders. Background offset trimming implemented with a highly oversampling delta-sigma modulator enhances the resolution of the CMOS folders beyond 12 bits. The background offset trimming circuit continuously measures and adjusts the offsets of the folding amplifiers without interfering with the normal operation. The prototype system is further refined using subranging and digital correction, and exhibits a spurious-free dynamic range (SFDR) of 82 dB at 40 MSamples/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are about ±0.5 and ±2.0 LSB, respectively. The chip fabricated in 0.5-μm CMOS occupies 8.7 mm2 and consumes 800 mW at 5 V  相似文献   

11.
实现了一种适合手持式设备应用的8 bit模数(A/D)转换器,该A/D转换器采用了2级电容插值和斩波放大技术以降低正常工作模式功耗,流水放大和预平衡比较器技术有效地提高了采样频率.测试结果表明,该流水插值A/D转换器的微分非线性(DNL)和积分非线性(INL)分别为-1~1.63LSB和-1.66~2.05LSB,其总谐波失真(THD)、去除寄生动态范围(SFDR)和信噪加失真比(SNDR)分别为-43 dB、54 dB和36.7 dB,正常工作模式和等待模式功耗分别为76 mW和5 mW.该芯片采用中芯国际(SMIC)0.18 μm单层多晶六层金属混合CMOS工艺,芯片面积为1269 μm×885 μm.  相似文献   

12.
A 13-b 5-MHz pipelined analog-to-digital converter (ADC) was designed with the goal of minimizing power dissipation. Power was reduced by using a high swing residue amplifier and by optimizing the per stage resolution. The prototype device fabricated in a 1.2 μm CMOS process displayed 80.1 dB peak signal-to-noise plus distortion ratio (SNDR) and 82.9 dB dynamic range. Integral nonlinearity (INL) is 0.8 least significant bits (LSB), and differential nonlinearity (DNL) is 0.3 LSB for a 100 kHz input. The circuit dissipates 166 mW on a 5 V supply  相似文献   

13.
A base-4 architecture for folding and interpolating ADC is proposed. It employs cascaded folding and interpolating topology with both the folding factors and interpolating factors of 4. Duo to that the base-4 folding and interpolating has an intrinsic relationship with the quantization process which is base-2, the architecture requires only 2 × N + 6 comparators for an N-bit ADC. What’s more, the coarse flash ADC can be eliminated because all the most significant bits can be conveniently extracted from the intermediate signals as the “byproduct” of the folding amplifiers. In addition, the base-4 architecture can be extended to higher resolution easily because of the modularized and unified configuration. This architecture is implemented with a 1 GS/s 8-bit ADC in 0.35 μm SiGe BiCMOS process. Measurement results reveal the chip exhibits DNL of 0.30/?0.26 LSB and INL of 0.80/?0.80 LSB. The ENOB is 6.9 LSB at 10.1 MHz input. The SNDR is above 42 dB over the first and the second Nyquist zone. The SFDR is above 45 dB over the first Nyquist zone and the second Nyquist zone. The ERBW is over 1.2 GHz.  相似文献   

14.
This paper proposes a 10-bit digital-to-analog converter (DAC) consisting of a 6-bit resistive DAC (RDAC) and a 4-bit offset-adjustable op-amp for LCD column driver applications. The 6-bit RDAC selects only one voltage from the global resistor string before transmitting it to the op-amp. The op-amp implements 4-bit interpolation by adjusting the offset voltage. The maximal differential nonlinearity and integral nonlinearity of the proposed converter were measured at 0.8 LSB and 0.81 LSB, respectively, using 1LSB equal to 2 mV. The proposed 10-bit DAC occupies only 70 % of the space required for a conventional 8-bit RDAC.  相似文献   

15.
A 1.5-V, 10-bit, 14.3-MS/s pipeline analog-to-digital converter was implemented in a 0.6 μm CMOS technology. Emphasis was placed on observing device reliability constraints at low voltage. MOS switches were implemented without low-threshold devices by using a bootstrapping technique that does not subject the devices to large terminal voltages. The converter achieved a peak signal-to-noise-and-distortion ratio of 58.5 dB, maximum differential nonlinearity of 11.5 least significant bit (LSB), maximum integral nonlinearity of 0.7 LSB, and a power consumption of 36 mW  相似文献   

16.
A 12-b, 10-MHz, 250-mW, four-stage analog-to-digital converter (ADC) was implemented using a 0.8-μm p-well CMOS technology. The ADC based on a digitally calibrated multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted capacitor array in the front-end stage and a unit-capacitor array in the remaining back-end stages to obtain 12 b level linearity while maintaining high yield. All the analog and digital circuit functional blocks are fully integrated on a single chip, which occupies a die area of 15 mm2 (4.2 mm×3.6 mm). Measured differential nonlinearity (DNL) and integral nonlinearity (INL) of the prototype are less than ±0.8 LSB and ±1.8 LSB, respectively  相似文献   

17.
A 10-bit 200-MS/s CMOS parallel pipeline A/D converter   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MS/s CMOS parallel pipeline analog-to-digital (A/D) converter that can sample input frequencies above 200 MHz. The converter utilizes a front-end sample-and-hold (S/H) circuit and four parallel interleaved pipeline component A/D converters followed by a digital offset compensation. By optimizing for power in the architectural level, incorporating extensively parallelism and double-sampling both in the S/H circuit and the component ADCs, a power dissipation of only 280 mW from a 3.0-V supply is achieved. Implemented in a 0.5-μm CMOS process, the circuit occupies an area of 7.4 mm2. The converter achieves a differential nonlinearity and integral nonlinearity of ±0.8 LSB and ±0.9 LSB, respectively, while the peak spurious-free-dynamic-range is 55 dB and the total harmonic distortion better than 46 dB at a sampling rate of 200 MS/s  相似文献   

18.
A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter   总被引:3,自引:0,他引:3  
In this paper, a 10-bit 1-GSample/s current-steering CMOS digital-to-analog (D/A) converter is presented. The measured integral nonlinearity is better than ±0.2 LSB and the measured differential nonlinearity lies between -0.08 and 0.14 LSB proving the 10-bit accuracy. The 1-GSample/s conversion rate has been obtained by an, at transistor level, fully custom-designed thermometer decoder and synchronization circuit. The layout has been carefully optimized. The parasitic interconnect loads have been estimated and have been iterated in the circuit design. A spurious-free dynamic range (SFDR) of more than 61 dB has been measured in the interval from dc to Nyquist. The power consumption equals 110 mW for a near-Nyquist sinusoidal output signal at a 1-GHz clock. The chip has been processed in a standard 0.35-μm CMOS technology and has an active area of only 0.35 mm2  相似文献   

19.
Simple, low‐cost and yet accurate, sensitive, and quantitative detection of a broad range of analytical targets by means of small footprint sensing devices has the potential to revolutionize medical diagnostics, food safety, and environmental monitoring. This work demonstrates a functional nucleic acids (FNAs) tethered AuNPs/β‐Ni(OH)2 nanosheets (NS)/Ni foam nanocomposite as a miniaturized electrode. Through the rational design of a low‐barrier ohmic contact of AuNPs to β‐Ni(OH)2 NS and a target mediated nanochannel electron transfer effect, a variety of analytical targets, ranging from a disease marker (thrombin, 16.3 × 10?12 m detection limit) to an important biological cofactor (adenosine, 3.2 × 10?12 m detection limit), and to a toxic metal ion (Hg2+, 3.1 × 10?12 m detection limit), are detected with ultrasensitivity. The presence of target triggers the conformational change of FNAs, introducing strong steric hindrance and electrostatic repulsion to the diffusion of electron indicators toward the electrode surface, ultimately leading to the changes in impedance. A novel equivalent circuit considering the capacitive reactance is proposed to describe the 2D NS‐based impedance DNA bioelectrode. This sensing platform is easily applicable to the detection of many other targets in diverse sample matrices through the use of other suitable FNAs materials.  相似文献   

20.
王韧  刘敬波  秦玲  陈勇  赵建民 《微电子学》2006,36(5):651-654,658
设计了一种3.3 V 9位50 MS/s CMOS流水线A/D转换器。该A/D转换器电路采用1.5位/级,8级流水线结构。相邻级交替工作,各级产生的数据汇总至数字纠错电路,经数字纠错电路输出9位数字值。仿真结果表明,A/D转换器的输出有效位数(ENOB)为8.712位,信噪比(SNR)为54.624 dB,INL小于1 LSB,DNL小于0.6 LSB,芯片面积0.37 mm2,功耗仅为82 mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号