首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006  相似文献   

2.
The mechanical and tribological properties of carbon fiber (CF) reinforced polyamide 66 (PA66)/polyphenylene sulfide (PPS) blend composite were studied in this article. It was found that CF reinforcement greatly increases the mechanical properties of PA66/PPS blend. The friction coefficient of the sample decreases with the increase of CF content. When CF content is lower (below 30%), the wear resistance is deteriorated by the addition of CF. However, the loading of higher than 30% CF significantly improves the tribological properties of the blend. The lowest friction coefficient (0.31) and the wear volume (1.05 mm3) were obtained with the PA66/PPS blend containing 30% CF. The transfer film and the worn surface formed by sample during sliding were examined by scanning electron microscopy. The observations revealed that the friction coefficient of PA66/PPS/CF composite depends on the formation and development of a transfer film on the counterface. The abrasive wear caused by ruptured CFs (for lower CF content) and the load bearing ability of CFs (for higher CF content) are the major factors affecting the wear volume. In addition, the improvements of mechanical properties, thermal conductivity, and self‐lubrication of bulk CFs are also contributed to the wear behavior of PA66/PPS/CF composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
The wear-resistant polyamide 66 (PA66) composites were prepared and the mechanical properties, friction and wear properties were inspected. Results show that GF, PTFE and MoS2 can improve the mechanical, friction and wear properties of PA66 composites. PTFE is more effective on the friction and wear properties than MoS2 when GF is 30%wt. The best effect of the modification is 35%wt GF when both PTFE and MoS2 were added. Friction coefficient first increase, then reduce to be stable as sliding time increases. Friction coefficient and wear mass loss increase as load increases. The main wear mechanisms are fatigue and abrasion wears.  相似文献   

4.
聚四氟乙烯填充聚醚醚酮及其复合材料的研究   总被引:4,自引:0,他引:4  
利用熔融共混工艺制备了PEEK/PTFE共混物及其复合材料,研究了PTFE对PEEK共混物及其复合材料力学性能和耐磨性的影响,结果表明,PEEK经10% ̄PTFE填充改性,玻纤/碳纤混杂增强后,由于磨损方式的改变,使该复合材料不仅保持了良好的物理力学性能,而且具有较低的摩擦系数,耐磨性也得到明显改善。  相似文献   

5.
采用模压成型法制备了聚苯硫醚(PPS)/聚酰胺酰亚胺(PAI)合金及其碳纤维(CF)改性复合材料。测试分析了该复合材料的力学性能,并通过扫描电镜(SEM)对其摩擦磨损表面形貌进行了观察,探讨了复合材料的摩擦磨损性能;考察了PPS/PAI合金的最优配比及CF含量对PPS/PAI/CF复合材料性能的影响。结果表明:PAI的加入改善了PPS的力学性能,当PPS/PAI质量比为40/60时,PPS/PAI合金的力学性能最优;另外,CF的加入使PPS/PAI/CF填充复合材料的摩擦系数和磨损量大幅度下降,其中,当CF含量为30%时,PPS/PAI/CF填充复合材料的摩擦系数和磨损量较未填充PPS/PAI分别下降了66%和90%。  相似文献   

6.
Summary: In this paper, immiscible, partially miscible and miscible blends of polyamide 66 (PA66) and high density polyethylene (HDPE) were obtained by changing compatibilizer concentrations. Mechanical and tribological properties of materials were tested. It was found that the addition of compatibilizer greatly improved the mechanical properties of PA66/HDPE blends. The wear of PA66/HDPE blends was strongly affected by the phase structure. The best blend for lower friction coefficient and higher wear resistance was the blend with a miscible structure, which significantly improved the tribological properties of PA66 and HDPE. SEM investigations on the worn surface and the steel counterface indicated that, for the immiscible and partially miscible blend systems, the dispersed HDPE particles were pulled out from the worn surfaces during sliding because of the poor adhesion between HDPE and PA66, while this was not observed in the miscible blend system.

SEM micrograph of the worn surface formed by PA66/HDPE blend without HDPE‐g‐MAH.  相似文献   


7.
用马来酸酐接枝高密度聚乙烯(PE-HD-g-MAH)与聚酰胺66(PA66)/超高相对分子质量聚乙烯(PE-UHMW)共混制备了共混物,并利用扫描电子显微镜、动态机械分析仪、毛细管流变仪和傅里叶红外光谱分析对共混物的力学性能及摩擦学性能进行了研究。结果表明,加入PE-HD-g-MAH可以促进PA66和PE-UHMW的界面相容性,提高了共混物的拉伸、弯曲与冲击性能;随着PE-HD-g-MAH含量的增加,共混物的摩擦因数逐渐降低;加入PE-HD-g-MAH并未使共混物发生摩擦化学反应,共混物的磨损呈现疲劳磨损特征;加入PE-HD-g-MAH抑制了疲劳裂纹的增长,使得摩擦转移膜逐渐均匀。  相似文献   

8.
The objective of this research was to study the effects of polytetrafluoroethylene (PTFE) as a solid lubricant on the mechanical, electrical, and tribological properties of carbon fiber (CF)-reinforced polycarbonate (PC) composites. Samples were prepared by means of single-screw extrusion and injection molding processes. The mechanical tests included tensile, flexural, and failing weight impact tests, while the electrical tests consisted of surface and volume resistivity tests. The tribological testing was conducted under dry sliding conditions using pin-on-disk configuration. The results showed that the addition of CF managed to significantly reduce the electrical resistivity as the CF loading approached 10–15 wt%. The addition of PTFE managed to reduce the resistivity of the composite, that is, from 4.51 to 0.53 × 10 (Ωcm). The incorporation of 15 wt%. CF resulted with an increase of 45% in tensile strength and 51.5% in flexural strength, while the addition of PTFE had a negative impact on both properties. It was shown that PTFE was able to reduce the friction coefficient, μ and wear rate, K up to 0.257 and 6.35 × 106 (mm3/Nm), respectively, which can be attributed to the excellent abilities of PTFE to form transfer film. The composite consisting of 15 wt% CF and 10 wt%. PTFE showed highest improvement in term of electrical resistivity, and is deemed the most suitable composition for this study. Scanning electron microscopy was also carried out to further elucidate the fracture and wear mechanism of the PC/CF/PTFE composites.  相似文献   

9.
王成军 《中国塑料》2010,24(6):62-66
以聚酰胺66(PA66)、聚苯硫醚(PPS) 及65Mn钢板为主要原料,制备了一系列不同配比的金属基复合材料,并对这些材料进行不同条件下的摩擦学性能试验,最后通过结合强度试验来分析材料间的结合强度。结果表明,复合材料的摩擦因数及磨损速率随着聚酰胺66的增加而降低;同种材料的摩擦系数及磨损速率随着载荷和对摩速度的增加而先增大后减小;结合强度试验表明金属基复合材料的结合强度随着聚苯硫醚的增加而逐渐增大。  相似文献   

10.
聚苯硫醚复合材料摩擦性能的研究   总被引:2,自引:0,他引:2  
考察了聚四氟乙烯(PTFE)、纳米无机粒子及不同含量和粒度的石墨填充改性聚苯硫醚(PPS)复合材料的摩擦磨损性能、力学性能;并采用扫描电镜(SEM)观测了磨损表面及对摩面的微观结构。结果表明:石墨的添加有利于在对摩面上形成转移物,而且随着石墨含量的增加,材料的摩擦系数明显降低,但磨耗量却有所升高,而石墨的粒度变化对材料的摩擦性能没有太大的影响;当PTFE和石墨两种固体润滑剂同时加入时,材料的力学强度有所降低,但其摩擦系数及磨耗量都得到明显改善,材料以疲劳磨损为主:纳米无机粒子的加入会使材料的磨耗量有所增大,其磨损机理转变为磨粒磨损。  相似文献   

11.
王萍萍  芦艾  陈晓媛  王港  张晴 《中国塑料》2008,22(11):43-46
研究了聚酰胺66(PA66)改性玻璃纤维(GF)增强聚苯硫醚(PPS)(PPS/PA66/GF)复合体系的摩擦因数、磨损体积、磨损后表面的微观形貌及损耗因子峰值、储能模量对摩擦因数的影响。结果表明,PA66的加入显著改善了复合材料的摩擦学性能,当PA66含量为40 %(质量分数,下同)时,磨损最小,为5.24 mm3,相对于PPS+30 %GF(13.60 mm3)下降了61 %;扫描电镜分析磨损表面,随着PA66含量的增加,磨损机理由磨粒磨损转为粘着磨损;复合材料损耗因子峰值越大,摩擦因数越小;初始储能模量越大,摩擦因数越小。  相似文献   

12.
Nano‐micro hierarchical porous polyphenylene sulfide/polytetrafluoroethylene (PPS/PTFE) composites were prepared by mold‐leaching and vacuum melting process under high temperature condition. The tribological behaviors of porous PPS/PTFE composites and the synergism as a result of incorporation of both micro‐porogen (NaCl) and mesoporous TiO2 whiskers were investigated. The effects of mesoporous TiO2 whiskers and nonperforated TiO2 whiskers on the friction and wear properties of PPS/PTFE composites were comparatively studied, respectively. Results indicated that the wear rate of porous PPS/PTFE composites with 30 wt % NaCl and 7 wt % mesoporous TiO2 whiskers obtained the lowest values under the load of 100 N. Compared with pure PPS, the wear resistance of nano‐micro porous PPS/PTFE composite was enhanced by 6.45 × 103 times, showing outstanding wear resistance. During sliding condition, grease could be squeezed through the nano‐micro pores under the coupling effect of load and friction heat, and formed a lubricanting layer on friction surface, providing self‐lubricating effect and high wear resistance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The friction and wear properties of polytetrafluoroethylene (PTFE), polyimide (PI), and polyamide 66 (PA66) sliding against GCr15 bearing steel under both dry and oil-lubricated conditions were studied by using an MHK-500 ring-block wear tester (Timken wear tester), and then Stribeck's curves of PTFE, PI, and PA66 under lubrication of the oil were given out. The worn surfaces of these polymers and the transfer films formed on the counterfaces were examined by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that the friction and wear-reducing properties of PTFE, PI, and PA66 can be greatly improved by lubrication with liquid paraffin, and the friction coefficients can be decreased by 1 order of magnitude compared to those in dry friction condition. Under lubrication of liquid paraffin, the friction coefficients of PTFE, PI, and PA66 decrease with the increase of load, but the wear increases with the increase of load. The variations of friction coefficients with load for PTFE, PI, and PA66 under lubrication of liquid paraffin can be described properly by the Stribeck's curves, as given out in this article. Under higher loads and sliding speeds in liquid paraffin lubrication, the friction and wear reducing properties of PA66 are the best, and those of PTFE are the worst; therefore, PA66 is also very suitable for applications in oil-lubricated conditions. Meanwhile, SEM and optical microscope investigations show that the wear and transfer of PTFE, PI, and PA66 can be greatly reduced by lubrication of liquid paraffin, but they still take place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2175–2182, 1998  相似文献   

14.
采用双螺杆挤出机制备聚酰胺66(PA66)/碳纤维/玻璃纤维材料和PA66/碳纤维材料,另外加入相容剂马来酸酐接枝聚烯烃弹性体(POE–g–MAH)来改善相界面的相容性,同时评价其力学性能和摩擦磨损性能。结果表明:在碳纤维增强PA66材料的研究过程中引入玻璃纤维可降低最高界面温度并且使摩擦系数降低,有助于改善PA66材料的摩擦学性能,共混物的摩擦过程以磨粒磨损和粘着磨损为主。此外,在添加入玻璃纤维后,15%混杂纤维填充比15%碳纤维单独填充的PA66材料拉伸强度提高9.89%,冲击强度提高34.02%;而添加入20%混杂纤维与20%碳纤维单独填充的PA66材料相比,拉伸强度提高了71.65%,冲击强度提高了26.23%。  相似文献   

15.
Polyamide 66(PA66)/clay nanocomposites were prepared by direct melt compounding. The mechanical and tribological properties were evaluated. It was found that addition of clay into PA66 increased the bending strength and microhardness of PA66. And also, the incorporation of clay can reduce the friction coefficient of PA66. The nanocomposites which have the mass fraction less than 5% show less wear rate compared with neat PA66. High fraction of clay can cause severe agglomerated abrasives. The differences in the friction and wear behaviors of PA66 and PA66/clay nanocomposites are attributed to the differences in their surface morphologies, transfer film characteristic. The agglomerated abrasives on the worn surface contribute to the increase of wear rate of nanocomposites of higher mass fraction clay. The friction and wear behaviors of PA66 and its nanocomposites under high temperature exhibit similar tendency with those under 25°C. POLYM. ENG. SCI., 48:203–209, 2008. © 2007 Society of Plastics Engineers  相似文献   

16.
PA66 composites filled with surface-treated carbon fiber were prepared by twin-screw extruder in order to study the influence of carbon fiber surface arylboronic acid treatment on the mechanical and tribological behavior of the PA66 composites (CF/PA66). The mechanical property, friction and wear tests of the composites with untreated and treated carbon fiber were performed and the worn surface morphology was analyzed. The results show that the worn surface area of the treated carbon fiber was far smoother than that of the untreated carbon fiber and there formed a bonding adhesion on the carbon fiber surface after treatment. The tensile strength of CF/PA66 composites with surface arylboronic acid treatment was improved. The friction coefficient and wear of arylboronic acid treated CF/PA66 composites were apparently lower than that with untreated carbon fiber. In conclusion, the surface treatment favored the improvement of the higher interface strength and so had good effect on improving the tribological properties of the composites.  相似文献   

17.
采用硅烷偶联剂KH-560和钛酸酯偶联剂TM-38S对四针状氧化锌晶须(T-ZnOw)进行表面改性,制备了相应的聚苯硫醚(PPS)尼/龙(PA)66/T-ZnOw复合材料,研究了两种偶联剂及其复合体系对T-ZnOw表面改性效果和相应复合材料力学性能的影响,并利用扫描电子显微镜对复合材料的断面形态进行了观察。结果表明,钛酸酯偶联剂TM-38S对T-ZnOw的表面改性效果要优于硅烷偶联剂KH-560;两种偶联剂均提高了复合材料的拉伸强度、断裂伸长率和缺口冲击强度,但对复合材料的弯曲强度影响不大。其中TM-38S改性T-ZnOw与PPS/PA66复合后所得材料的力学性能优于KH-560改性T-ZnOw的材料。两种偶联剂的复合体系虽然可以弥补KH-560副反应对T-ZnOw表面改性的不利影响,但对改善复合材料力学性能的协同作用不明显。  相似文献   

18.
采用MM-2000型摩擦磨损试验机评价了PA/TLCP二元共混物的摩擦学性能;同时考察了马来酸酐接枝三元乙丙共聚物对PA/TLCP二元共混物摩擦学性能的影响.分析测试结果表明:引入马来酸酐接枝三元乙丙共聚物为相容剂能够有效地提高界面增容作用,材料力学性能提高;同时,相容剂的加入,改善TLCP与基体PA66的结合强度,提高了共混物的耐磨性,也有利于转移膜的形成.  相似文献   

19.
研究了增容剂乙烯(E)-丙烯酸酯(MA)-甲基丙烯酸缩水甘油酯(GMA)共聚物(E-MA-GMA)对聚苯硫醚(PPS)/聚酰胺(PA)66共混体系的相容性、力学性能、热性能、流变性能的影响。结果表明,增容剂的加入,增加了共混体系的相容性,提高了共混物的力学性能;DSC结果表明,E-MA-GMA影响共混体系的结晶和熔融行为;流变性能测试结果表明,增容PPS/PA66共混体系是假塑性流体,E-MA-GMA用量增加,使共混体系的表观黏度增大。  相似文献   

20.
刘峰  唐帅 《上海塑料》2022,(1):38-44
采用直径为3.0μm的短玻纤(GF)(GF质量分数为20%)增强改性聚苯醚(MPPO),将其与粒径为5~7 μm的聚四氟乙烯(PTFE)微粉和甲基苯基硅油构成摩擦因数较低的耐磨体系.通过熔融共混法制备PTFE改性GF增强MPPO材料(简称MPPO/20%GF复合材料).对MPPO/20%GF复合材料的力学性能、热变形温...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号