首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Along with visual and tactile sensations, thermal sensation by temperature feeling on the skin can provide rich physical information on the environment and objects. With a simple touch of objects, relative temperature can be sensed and even objects can be differentiated with different thermal properties without any visual cue. Thus, artificially reproducing accurate/controllable thermal sensation haptic signals on human epidermis will certainly be a major research area to reconstruct a more realistic virtual reality (VR) environment. In this study, for the first time, a skin‐like, highly soft and stretchable and bi‐functional (both cold and hot sensation) thermo‐haptic device is reported for wearable VR applications with a single device structure (not separate heater and cooler). The skin‐like thermo‐haptic (STH) device can actively cool down and heat up deformable skin surfaces with instantaneous and accurate adjustment of temperature based upon a feedback control algorithm to mimic desirable thermal sensation with 230% stretchability. As a proof‐of‐concept, the STH device is integrated with a finger‐motion tracking glove to provide artificial thermal sensation information to the skin in various situations such as touching cold beer bottles and hot coffee cups in virtual space. This new type of STH device can offer potential implications for next‐generation haptic devices to provide unique thermal information for a more realistic virtual‐world field and medical thermal treatment.  相似文献   

2.
With the arrival of intelligent terminals, tactile sensors which are capable of sensing various external physical stimuli are considered among the most vital devices for the next generation of smart electronics. To create a self‐powered tactile sensor system that can function sustainably and continuously without an external power source is of crucial significance. An overview of the development in self‐powered tactile sensor array system based on the triboelectric effect is systematically presented. The combination of multi‐functionalization and high performance of tactile sensors aimed at achieving highly comprehensive performance is presented. For the tactile sensor unit, a development is summarized based on the two primary modes which are vertical contact–separation and single‐electrode. For the pressure mapping array, the resolution is significantly enhanced by the novel cross‐type configuration based on the single‐electrode mode. Integrated with other mechanisms, the performance will be further elevated by broadening of the detect range and realizing of visualization of pressure imaging. Then, two main applications of human–machine interaction (HMI) and trajectory monitoring are comprehensively summarized. Finally, the future perspectives of self‐powered tactile sensor system based on triboelectric effect are discussed.  相似文献   

3.
Ionic tactile sensors (ITS) represent a new class of deformable sensory platforms that mimic not only the tactile functions and topological structures but also the mechanotransduction mechanism across the biological ion channels in human skin, which can demonstrate a more advanced biological interface for targeting emerging human‐interactive technologies compared to conventional e‐skin devices. Recently, flexible and even stretchable ITS have been developed using novel structural designs and strategies in materials and devices. These skin‐like tactile sensors can effectively sense pressure, strain, shear, torsion, and other external stimuli with high sensitivity, high reliability, and rapid response beyond those of human perception. In this review, the recent developments of the ITS based on the novel concepts, structural designs, and strategies in materials innovation are entirely highlighted. In particular, biomimetic approaches have led to the development of the ITS that extend beyond the tactile sensory capabilities of human skin such as sensitivity, pressure detection range, and multimodality. Furthermore, the recent progress in self‐powered and self‐healable ITS, which should be strongly required to allow human‐interactive artificial sensory platforms is reviewed. The applications of ITS in human‐interactive technologies including artificial skin, wearable medical devices, and user‐interactive interfaces are highlighted. Last, perspectives on the current challenges and the future directions of this field are presented.  相似文献   

4.
We propose a homology between thermodynamic systems and images for the treatment of time‐varying imagery. A physical system colder than its surroundings absorbs heat from the surroundings. Furthermore, the absorbed heat increases the entropy of the system, which is closely related to its disorder as given by the definition of Clausius and Boltzmann. Because pixels of an image are viewed as a state of lattice‐like molecules in a thermodynamic system, the task of reckoning the entropy variations of pixels is similar to estimating their degrees of disorder. We apply this homology to the uncalibrated stereo matching problem. The absence of calibrations alleviates user efforts to install stereo cameras and enables users to freely modify the composition of the cameras. The proposed method is also robust to differences in brightness, white balancing, and even focusing between stereo image pairs. These peculiarities enable users to estimate the depths of interesting objects in practical applications without much effort in order to set and maintain a stereo vision setup. Users can consequently utilize two webcams as a stereo camera.  相似文献   

5.
Tactile detection is a crucial technology in many fields, such as electronic skin, touch screen control, human prostheses, and screen fingerprint identification. Tribotronics has demonstrated active mechanosensation from external mechanical stimuli, which greatly enriches the sensing mechanisms of tactile detection. In this work, a monolithic integrated indium‐gallium‐zinc‐oxide (InGaZnO or IGZO) thin‐film transistor (TFT) array is developed for high‐resolution tactile detection. By using the conventional semiconductor fabrication processes, each IGZO TFT cell in the array shows uniform electrical performance. In addition, the drain–source current can be individually tuned by the electrostatic potential generated by the contact electrification between a movable gate and the gate dielectric. The monolithic integrated array displays a relatively high resolution of 12 pixels per inch and can realize a millimeter‐level tactile perception and motion tracking. This work presents a facile and viable strategy toward micro/nano‐scale tribotronics, which can realize high‐resolution and large‐scale tactile detection.  相似文献   

6.
Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer‐vision technologies are being developed and commercialized. This paper suggests an in‐vehicle head‐up display (HUD) system that is combined with AR technology. The proposed system recognizes driving‐safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving‐safety information obtained by the proposed AR‐HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.  相似文献   

7.
It is challenging to post‐tune the sensitivity of a tactile force sensor. Herein, a facile method is reported to tailor the sensing properties of conductive polymer composites by utilizing the liquid‐like property of dynamic polymer matrix at low strain rates. The idea is demonstrated using dynamic polymer composites (CB/dPDMS) made via evaporation‐induced gelation of the suspending toluene solution of carbon black (CB) and acid‐catalyzed dynamic polydimethylsiloxane (dPDMS). The dPDMS matrices allow CB to redistribute to change the sensitivity of materials at the liquid‐like state, but exhibit typical solid‐like behavior and thus can be used as strain sensors at normal strain rates. It is shown that the gauge factor of the polymer composites can be easily post‐tuned from 1.4 to 51.5. In addition, the dynamic polymer matrices also endow the composites with interesting self‐healing ability and recyclability. Therefore, it is envisioned that this method can be useful in the design of various novel tactile sensing materials for many applications.  相似文献   

8.
With the use of smart card in user authentication mechanisms, the concept of two‐factor authentication came into existence. This was a forward move towards more secure and reliable user authentication systems. It elevated the security level by requiring a user to possess something in addition to know something. In 2010, Sood et al. and Song independently examined a smart‐card‐based authentication scheme proposed by Xu et al. They showed that in the scheme of Xu et al., an internal user of the system can turn hostile to impersonate other users of the system. Both of them also proposed schemes to improve the scheme of Xu et al. Recently, Chen et al. identified some security problems in the improved schemes proposed by Sood et al. and Song. To fix these problems, Chen et al. presented another scheme, which they claimed to provide mutual authentication and withstand lost smart card attack. Undoubtedly, in their scheme, a user can also verify the legitimacy of server, but we find that the scheme fails to resist impersonation attacks and privileged insider attack. We also show that the scheme does not provide important features such as user anonymity, confidentiality to air messages, and revocation of lost/stolen smart card. Besides, the scheme defies the very purpose of two‐factor security. Furthermore, an attacker can guess a user's password from his or her lost/stolen smart card. To meet these challenges, we propose a user authentication method with user anonymity. We show through analysis and comparison that the proposed scheme exhibits enhanced efficiency in contrast to related schemes, including the scheme of Chen et al. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Energy‐harvesting electronic skin (E‐skin) is highly promising for sustainable and self‐powered interactive systems, wearable human health monitors, and intelligent robotics. Flexible/stretchable electrodes and robust energy‐harvesting components are critical in constructing soft, wearable, and energy‐autonomous E‐skin systems. A stretchable energy‐harvesting tactile interactive interface is demonstrated using liquid metal nanoparticles (LM‐NPs)‐based electrodes. This stretchable energy‐harvesting tactile interface relies on triboelectric nanogenerator composed of a galinstan LM‐NP‐based stretchable electrode and patterned elastic polymer friction and encapsulation layer. It provides stable and high open‐circuit voltage (268 V), short‐circuit current (12.06 µA), and transferred charges (103.59 nC), which are sufficient to drive commercial portable electronics. As a self‐powered tactile sensor, it presents satisfactory and repeatable sensitivity of 2.52 V·kPa?1 and is capable of working as a touch interactive keyboard. The demonstrated stretchable and robust energy‐harvesting E‐skin using LM‐NP‐based electrodes is of great significance in sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.  相似文献   

10.
Electronic skin (e‐skin) has been under the spotlight due to great potential for applications in robotics, human–machine interfaces, and healthcare. Meanwhile, triboelectric nanogenerators (TENGs) have been emerging as an effective approach to realize self‐powered e‐skin sensors. In this work, bioinspired TENGs as self‐powered e‐skin sensors are developed and their applications for robotic tactile sensing are also demonstrated. Through the facile replication of the surface morphology of natural plants, the interlocking microstructures are generated on tribo‐layers to enhance triboelectric effects. Along with the adoption of polytetrafluoroethylene (PTFE) tinny burrs on the microstructured tribo‐surface, the sensitivity for pressure measurement is boosted with a 14‐fold increase. The tactile sensing capability of the TENG e‐skin sensors are demonstrated through the characterizations of handshaking pressure and bending angles of each finger of a bionic hand during handshaking with human. The TENG e‐skin sensors can also be utilized for tactile object recognition to measure surface roughness and discern hardness. The facile fabrication scheme of the self‐powered TENG e‐skin sensors enables their great potential for applications in robotic dexterous manipulation, prosthetics, human–machine interfaces, etc.  相似文献   

11.
A tactile sensor should be able to detect both normal and tangential forces, which is mandatory for simulating human hands, but this fundamental function has been overlooked by most of the previous studies. Here, based on a triboelectric nanogenerator (TENG) with single‐electrode mode, the fully elastic and metal‐free tactile sensor that can detect both normal and tangential forces is proposed. With tiny burr arrays on the contact interface to facilitate the elastic deformation, the detected normal pressure by the device can reach to 1.5 MPa with a sensitivity of about 51.43 kPa V−1, and a large range of tangential forces can be detected ranging from 0.5 to 40 N with rough sensitivity of 0.83 N V−1 (0.5–3 N) and 2.50 N V−1 (3–40 N). Meanwhile, the applied tangential forces from different directions can also be clearly distinguished by the four‐partitioned electrode structure. Moreover, a shield film is coated on the top surface of the device, which can screen the electrostatic interference and enhance the repeatability of the device. The demonstrated concept of this self‐powered tactile sensor has excellent applicability for industrial robotics, human–machine interactions, artificial intelligence, etc.  相似文献   

12.
The next generation of electronics will include human‐interactive flexible sensor sheets to monitor health. One approach is to realize practical macroscale low‐cost sensor arrays to monitor pressure distribution and health conditions without directly attaching a device onto the body. However, practical requirements such as reliability, scalability, and washability are not often discussed as most studies focus on the sensing sensitivity and validations. This study demonstrates an all textile‐based tactile force sensor sheet that covers the above requirements. By considering the device design and materials, high reliability/repeatability (≈250 000 cycles at ≈5 kPa) and washability are realized. These are important factors for practical applications for human‐interactive macroscale sensor sheets. In addition to the fundamental characteristics, pressure distribution mapping and respiration rate monitoring are confirmed by placing the sensor sheets on a bed, chair, and floor.  相似文献   

13.
An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems.  相似文献   

14.
Over the last few years, communication latency has been a major hurdle for most of the applications deployed in different network domains. During this era, a number of communication protocols and standards were developed and used by the community. However, still, the problem of latency persists keeping in view of the quality of service (QoS) and quality of experience (QoE) for different applications. To mitigate the aforementioned issues, in this paper, we present an in‐depth survey of state‐of‐the art proposals having tactile internet as a backbone for delay mitigation using 5G networks for future ultra‐reliable low‐latency applications such as Healthcare 4.0, Industry 4.0, virtual reality and augmented reality, and smart education. From the existing proposals, it has been observed that tactile internet can provide interactions between virtual objects to give a feel of real environment with maximum latency of 1 millisecond. Also, this paper highlights the key differences between the tactile internet and Internet of Things in context with 5G revolution. Then open issues and challenges of tactile internet for smart applications are analyzed. Finally, a comparison of existing proposals with respect to various parameters is presented, which allows the end users to select one of the proposals in comparison with its merits over the others.  相似文献   

15.
This study reports a self‐powered pressure sensor based on a monocharged electret nanogenerator (MENG). The sensor exhibits great advantages in terms of high reliability, ease of fabrication, and relatively high sensitivity. The working mechanism of the MENG sensor is studied by both theoretical derivations and finite element analyses to determine the electric potential distribution during the device operation. The MENG sensor exhibits a stable open circuit voltage ≈10 V at a 30.8 kPa pressure and a corresponding sensitivity of 325 mV kPa?1. The stability testing result shows that the device has only ≈5% attenuation after 10 000 cycles of repeated testing at 30.8 kPa pressure. Furthermore, it is found that the MENG sensor responds not only to a dynamic force but also a static force. Finally, a sensor array consisting of nine MENG sensor elements is fabricated. The testing results from the sensor array also reveal that a single touch of the sensor element can immediately light up an LED light at the corresponding position. This device holds great promise for use in future tactile sensors and artificial skin applications.  相似文献   

16.
A functional tactile sensing device is essential for next‐generation robotics and human–machine interfaces technologies, since the emulation of touching requires large‐scale pressure sensor arrays with distinguishable spatial‐resolution, high sensitivity, and fast response. Here, a flexible LED array composed of PEDOT:PSS and patterned ZnO NWs with a spatial resolution of 7 μm for mapping of spatial pressure distributions is designed and fabricated. The emission intensity of the LED array sensor matrix is dominated by locally applied strains as indicated by the piezo‐phototronic effect. Therefore, spatial pressure distributions are immediately obtained by parallel‐reading the illumination intensities of the LED arrays based on an electroluminescence working mechanism. A wide range of pressure measurements from 40 to 100 MPa are achieved through controlling the growth conditions of the ZnO nanowire array. These devices may find prospective applications as electronic skins by taking advantage of their high spatial‐resolution, flexibility, and wide pressure mapping range.  相似文献   

17.
The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this progress report is that in order to reproduce the feel of everyday objects, molecular control must be established over the properties of materials; ultimately, such control will enable the design of materials which can change these properties in real time. Stimuli‐responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.  相似文献   

18.
提出了基于共面标定参照物结合双电子经纬仪标定多个立体视觉传感器的方法,该方法允许共面标定参照物在测量空间内自由移动,以经纬仪坐标系为中介,利用双电子经纬仪测量不同位置共面参照物上不共线的标定特征点在经纬仪坐标系下的精确的三维坐标,建立共面参照物上所有特征点和经纬仪坐标系的转换关系,构建三维标定特征点,在现场对多个视觉传感器进行标定,保证了测量状态与标定状态完全一致.该标定方法降低了标定设备的成本,简化了标定过程,提高了立体视觉传感器的标定精度.实验结果表明,该方法切实可行.  相似文献   

19.
We propose a novel post‐processing algorithm and its very‐large‐scale integration architecture that simultaneously uses the passive and active stereo vision information to improve the reliability of the three‐dimensional disparity in a hybrid stereo vision system. The proposed architecture consists of four steps — left‐right consistency checking, semi‐2D hole filling, a tiny adaptive variance checking, and a 2D weighted median filter. The experimental results show that the error rate of the proposed algorithm (5.77%) is less than that of a raw disparity (10.12%) for a real‐world camera image having a resolution and maximum disparity of 256. Moreover, for the famous Middlebury stereo image sets, the proposed algorithm's error rate (8.30%) is also less than that of the raw disparity (13.7%). The proposed architecture is implemented on a single commercial field‐programmable gate array using only 13.01% of slice resources, which achieves a rate of 60 fps for stereo images with a disparity range of 256.  相似文献   

20.
In this paper, a user‐friendly mobile photo album system and albuming functions to support it are introduced. Stand‐alone implementation in a mobile device is considered. The main idea of user‐friendly photo browsing for albuming functions is to enable users to organize and browse their photos along semantically meaningful axes of events, personal identities, and categories. Experimental results demonstrate that the proposed method would be sufficiently useful and efficient for browsing personal photos in mobile environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号