共查询到20条相似文献,搜索用时 156 毫秒
1.
C. Liang K. Terabe T. Tsuruoka M. Osada T. Hasegawa M. Aono 《Advanced functional materials》2007,17(9):1466-1472
The construction of an electronic‐conductor/ionic‐conductor heterojunction in a well‐defined nanostructure is the basis of studying interfacial and bulk transport and the reactions of ions and electrons at the nanoscale level. An ionic‐conductor/metal (AgI/Ag) heterostructured nanowire array is easily fabricated by a template‐confined, step‐electrochemical technique. The structural and morphological evolution of the AgI/Ag heterostructure before and after its release from the anodic aluminum oxide (AAO) membrane is characterized by scanning electron microscopy, X‐ray diffraction, and optical spectroscopy. The structural disordering of released AgI is suggested by the appearance of a broad photoluminescence emission band at longer wavelengths and a short‐range‐order‐like Raman peak. The ionic conductivity of the AgI nanowire embedded inside the insulating AAO membrane is measured as being on the order of 10–3 S cm–1, which is an enhancement by two to three orders of magnitude compared with that of bulk polycrystalline AgI at room temperature. This electrochemical method could be useful in fabricating other pure and mixed ionic conductors in heterojunction nanostructures. 相似文献
2.
Guy Nesher Mali Aylien Guoday Sandaki David Avnir Gad Marom 《Advanced functional materials》2009,19(8):1293-1298
By employing the new methodology of entrapment of organic molecules within metals, we demonstrate the ability to modify the conductivity of a metal by suitable polymer entrapment. Specifically, polyaniline (PANI) in two molecular weights was entrapped in silver at different concentrations and a comprehensive comparison was preformed for a range of the composite properties, characterized by XRD, SEM, BET, TGA, and density measurements. Pressed films were utilized to measure the electrical conductivity of the composites in order to study the PANI‐silver interactions at the molecular level and to establish a correlation between the microscopic morphology and the film conduction. Such correlations have been identified, and are interpreted. This work extends the functional applications of the new metallic composites and offers insight on the polymer‐metal molecular level interactions. 相似文献
3.
E. Rossinyol A. Prim E. Pellicer J. Arbiol F. Hernández‐Ramírez F. Peiró A. Cornet J. R. Morante L. A. Solovyov B. Tian T. Bo D. Zhao 《Advanced functional materials》2007,17(11):1801-1806
SBA‐15 (2D hexagonal structure) and KIT‐6 (3D cubic structure) silica materials are used as templates for the synthesis of two different crystalline mesoporous WO3 replicas usable as NO2 gas sensors. High‐resolution transmission electron microscopy (HRTEM) studies reveal that single‐crystal hexagonal rings set up the atomic morphology of the WO3 KIT‐6 replica, whereas the SBA‐15 replica is composed of randomly oriented nanoparticles. A model capable of explaining the KIT‐6 replica mesostructure is described. A small amount of chromium is added to the WO3 matrix in order to enhance sensor response. It is demonstrated that chromium does not form clusters, but well‐distributed centers. Pure WO3 KIT‐6 replica displays a higher response rate as well as a lower response time to NO2 gas than the SBA‐15 replica. This behavior is explained by taking into account that the KIT‐6 replica has a higher surface area as demonstrated by Brunauer–Emmett–Teller analyses and its mesostructure is fully maintained after the screen‐printing step involved in sensors preparation. The presence of chromium in the material results in a shorter response time and improved sensor response to the lowest NO2 concentrations tested. Electrical differences related to mesostructure are reduced as a result of additive introduction. 相似文献
4.
Novel apatite‐type silicates are attracting considerable interest as a new family of oxide‐ion conductors with potential use in fuel cells and ceramic membranes. Combined computer modeling and X‐ray absorption (EXAFS) techniques have been used to gain fresh insight, at the atomic level, into the site selectivity and local structures of a wide range of dopants in these apatite materials. The results indicate that an unusually broad range of dopant ions (in terms of size and charge state) can substitute for La in the La9.33Si6O26 apatite, in accord with current experimental data. The range is much wider than that observed for doping on a single cation site in most other oxide‐ion conductors, such as the perovskite LaGaO3. In addition, our local structural investigation demonstrates that this dopant behavior is related to the flexibility of the silicate substructure, which allows relatively large local distortion and alteration of the site volumes. This could be a key factor in the high oxide‐ion conductivity exhibited by these apatite silicates. Indeed, the breadth of possible doping regimes in these novel materials provides new opportunities to design and optimize the conduction properties for fuel cell electrolytes. 相似文献
5.
H. S. Park Y. S. Choi Y. J. Kim W. H. Hong H. Song 《Advanced functional materials》2007,17(14):2411-2418
Room‐temperature ionic liquids (RTILs) are used as hierarchically multifunctional components by employing them not only as templates and co‐solvents for fabricating nanostructured materials but also proton conductors for electrochemical devices. RTIL/aluminum hydroxide (RTIL–Al) hybrids containing various nanometer‐sized shapes, including 1D nanorods with hexagonal tips, straight and curved nanofibers, nanofibers embedded in a porous network, and 3D octahedral‐, polyhedral‐, and angular spherical shapes are synthesized via a one‐pot ionothermal process. The structures or shapes of the RTIL–Al hybrids are related to the anionic moieties, alkyl chain length of the RTILs, and the humidity during fabrication. In particular, the introduction of water molecules into the interface led to 3D isotropic growth of the hybrids by influencing intermolecular interactions between the RTILs and the building blocks. The shapes of the nanohybrids fabricated from RTILs containing short alkyl chains were dependent on the types of anions and on the level of humidity. These results indicate that the cooperative interactions between RTILs and aluminum hydroxides induces emerging shape‐controlled hybrids. The shape‐controlled nanohybrids show enhanced electrochemical properties compared to those of a conventional hybrid prepared by mixing RTILs and aluminum hydroxides, exhibiting tenfold or higher proton conductivity under anhydrous condition and thermal stability as a result of the continuous proton conduction channel and the one‐pot‐assembled nanoconfinement. This method is expected to be a useful technique for controlling the diverse shapes of nanometer‐sized crystalline inorganic materials for a variety of applications, such as fuel cells, solar cells, rechargeable batteries, and biosensors. 相似文献
6.
W.‐H. Zhang X.‐B. Lu J.‐H. Xiu Z.‐L. Hua L.‐X. Zhang M. Robertson J.‐L. Shi D.‐S. Yan J.D. Holmes 《Advanced functional materials》2004,14(6):544-552
Direct synthesis (co‐condensation reaction) and post‐synthesis reaction (grafting) are combined for the first time to efficiently fabricate bifunctionalized ordered mesoporous materials (OMMs). Ethylenediamine‐containing OMMs (ED‐MCM‐41) were first synthesized via direct synthesis and then further modified by the phenyl (PH) group in a supercritical fluid (SCF) medium via grafting reaction, resulting in OMMs with ED and PH groups (PH‐ED‐MCM‐41). X‐ray diffraction (XRD) patterns, N2 sorption properties, transmission electron microscopy (TEM), 29Si and 13C magic angle spinning (MAS) NMR, chemical analysis, and hydrothermal treatment were used to characterize the bifunctionalized materials. Experiments show that bifunctionalized OMMs can be efficiently prepared by modifying the directly synthesized monofunctionalized OMMs via grafting reaction in a supercritical fluid medium. Both functional groups are distributed uniformly at the surfaces. The advantage of bifunctionalized OMMs over monofunctionalized OMMs was illustrated by introducing thiol groups into ED‐MCM‐41 materials and the subsequent formation of CdS nanocrystals inside thiol‐ and ED‐functionalized MCM‐41 (HS‐ED‐MC‐41). Because of the variety of the functional groups that can be introduced into OMMs by direct synthesis or post‐synthesis reaction, it is expected that the present strategy could provide a generally applicable approach to the design of OMMs with two functional groups. 相似文献
7.
S. Banerjee P. S. Devi D. Topwal S. Mandal K. Menon 《Advanced functional materials》2007,17(15):2847-2854
In order to identify new oxide ion‐conducting materials in the ceria family of oxides, the unique effect of co‐doping is explored and a novel series of Ce0.8Sm0.2–xCaxO2–δ compositions is identified that have enhanced properties compared to the single‐doped Ce0.8Sm0.2O1.9 and Ce0.8Ca0.2O1.9 compositions. Moreover, the superior characteristics of the co‐doped Ce0.8Sm0.2–xCaxO2–δ powders prepared by the mixed‐fuel process aid in obtaining 98 % dense ceramics upon sintering at 1200 °C for 6 h. Though a linear increase in conductivity is observed by replacing Sm with Ca, the composition with the maximum amount of Ca and the minimum amount of Sm exhibits a significant improvement in properties compared to the rest in the series. The composition Ce0.80Sm0.05Ca0.15O2–δ exhibits a conductivity as high as 1.22 × 10–1 S cm–1 at 700 °C with minimum activation energy (0.56 eV) and a superior chemical stability to reduction compared to any of the hitherto known (CaSm) compositions. The absence of CeIII, confirmed both from X‐ray photoelectron spectroscopy and X‐ray absorption spectroscopy, strongly suggests that the observed increase in conductivity is solely due to the oxide ion conductivity and not due to the partial electronic contribution arising from the presence of CeIII and CeIV. To conclude, the experimental results on the Ce0.8Sm0.2–xCaxO2–δ series underscore the unique effect of calcium co‐doping in identifying a cost‐effective new composition, with a remarkably high conductivity and enhanced chemical stability to reduction, for technological applications. 相似文献
8.
A novel mesoporous‐nanotube hybrid composite, namely mesoporous tin dioxide (SnO2) overlaying on the surface of multiwalled carbon nanotubes (MWCNTs), was prepared by a simple method that included in situ growth of mesoporous SnO2 on the surface of MWCNTs through hydrothermal method utilizing Cetyltrimethylammonium bromide (CTAB) as structure‐directing agents. Nitrogen adsorption–desorption, X‐ray diffraction and transmission electron microscopy analysis techniques were used to characterize the samples. It was observed that a thin layer tetragonal SnO2 with a disordered porous was embedded on the surface of MWCNTs, which resulted in the formation of a novel mesoporous‐nanotube hybrid composite. On the base of TEM analysis of products from controlled experiment, a possible mechanism was proposed to explain the formation of the mesoporous‐nanotube structure. The electrochemical properties of the samples as anode materials for lithium batteries were studied by cyclic voltammograms and Galvanostatic method. Results showed that the mesoporous‐tube hybrid composites displayed higher capacity and better cycle performance in comparison with the mesoporous tin dioxide. It was concluded that such a large improvement of electrochemical performance within the hybrid composites may in general be related to mesoporous‐tube structure that possess properties such as one‐dimensional hollow structure, high‐strength with flexibility, excellent electric conductivity and large surface area. 相似文献
9.
U. Anselmi‐Tamburini F. Maglia G. Chiodelli A. Tacca G. Spinolo P. Riello S. Bucella Z.A. Munir 《Advanced functional materials》2006,16(18):2363-2368
Nanometric ceria powders doped with 30 mol % samaria are consolidated by a high‐pressure spark plasma sintering (HP‐SPS) method to form > 99 % dense samples with a crystallite size as small as 16.5 nm. A conductivity dependence on grain size was noted: when the grain size was less than 20 nm, only one semicircle in the AC impedance spectra was observed and was attributed to bulk conductivity. In contrast to previous observations on pure ceria, the disappearance of the grain‐boundary blocking effect is not associated with mixed conductivity. With annealing and concomitant grain growth, the samples show the presence of a grain‐boundary effect. 相似文献
10.
A series of manganese oxide‐loaded SBA‐15 (MnSBA‐xh, x = 1, 2, 3, 4, 5, 6; h: hour(s)) mesoporous materials are synthesized via a facile, in‐situ reduction method with a surfactant template. The composite materials are characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, N2 sorption isotherms, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy, energy‐dispersive spectroscopy, and CO oxidation catalysis. The results show that a high content of manganese (an atomic ratio of Mn/Si from 0.12 up to approximately 1) could be loaded into the channels of SBA‐15 when treated with an aqueous solution of potassium permanganate, while retaining the ordered mesostructure and large surface area of SBA‐15. Increasing the manganese oxide content results in a gradual decrease in the specific surface area, pore size, and pore volume. XPS spectra are employed to confirm the redox reaction between KMnO4 and the surfactant. CO‐conversion tests on the calcined MnSBA‐2h sample (MnSBA‐2h‐cal) shows that it has a repeatable, and relatively high, catalytic activity. 相似文献
11.
A variety of alkyl hydroperoxides such as tert‐butyl‐, tert‐octyl‐, 1‐cyclopentyl‐, 1‐cyclohexyl‐, 3,4‐disubstituted‐1‐cyclohexyl‐, n‐propyl, and n‐undecyl‐hydroperoxides have been functionalized onto ordered mesoporous silica, SBA‐15, from the corresponding covalently anchored synthons. All the tert‐hydroperoxides are prepared by autoxidation using molecular O2 and an initiator, whereas other hydroperoxides are obtained by reaction with H2O2. For autoxidation, the use of a combination of an azoinitiator (AIBN) and N‐hydroxyphthalimide increased the hydroperoxide yield compared with using the azoinitiator alone. Synthons containing two or more tert‐ and sec‐hydrogens lead to higher peroxide yield compared to synthons with a single reactive site. Oxidation of Si–OH (silanol groups) with acidic H2O2 at low temperature produces Si–OOH. Reusability of these alkyl hydroperoxides is carried out by oxidation of alcohols obtained from the corresponding alkyl hydroperoxides using H2O2. Both the covalently anchored synthons and the resulting hydroperoxides are thoroughly characterized by powder X‐ray diffraction, 13C cross‐polarized magic angle spinning NMR, TG/DTA, Fourier transform IR spectroscopy, sorption, and surface area measurements. The quantification of the amount of alkyl hydroperoxide was carried out by iodometric titration using a thio solution. The hydroperoxides exhibit high activity for the epoxidation of styrene to styrene oxide and exhibit reasonably high efficiency for oxygen transfer. 相似文献
12.
The electrical properties of nanostructured, heavily yttria‐ or samaria‐doped ceria ceramics are studied as a function of grain size using electrochemical impedance spectroscopy (EIS). A remarkable enhancement in the total ionic conductivity of about one order of magnitude is found in nanostructured samples, compared with the intrinsic bulk conductivity of conventional microcrystalline ceramics. This effect is attributed to the predominance of grain‐boundary conduction in the nanostructured materials, coupled with an increase in the grain‐boundary ionic diffusivity with decreasing grain size. 相似文献
13.
Magnetite nanoparticles modified covalently with triethoxysilane having a quaternary dicetyl ammonium ion are used together with tetraethylorthosilicate as building blocks to prepare a mesoporous material. Cetyltrimethylammonium bromide is used as a structure‐directing agent under conditions typically used for mesoporous MCM‐41 silicas. The resulting mesoporous material (MAG‐MCM‐41), containing up to 15 wt % of magnetite is characterized by transmission electron microscopy (TEM), isothermal gas adsorption, and X‐ray diffraction. In contrast to siliceous MCM‐41, mesoporous MAG‐MCM‐41 exhibits a remarkable hydrothermal stability. The magnetic properties of MAG‐MCM‐41 are characterized by DC and AC magnetic susceptibility, and by isothermal hysteresis cycles, confirming the long‐range magnetic ordering above 400 K. As evidenced by atomic force microscopy and TEM, the ability to respond to magnetic fields is used to orient films of MAG‐MCM‐41 with the channels perpendicular to a support. 相似文献
14.
A facile approach of solvent‐evaporation‐induced coating and self‐assembly is demonstrated for the mass preparation of ordered mesoporous carbon‐silica composite monoliths by using a polyether polyol‐based polyurethane (PU) foam as a sacrificial scaffold. The preparation is carried out using resol as a carbon precursor, tetraethyl orthosilicate (TEOS) as a silica source and Pluronic F127 triblock copolymer as a template. The PU foam with its macrostructure provides a large, 3D, interconnecting interface for evaporation‐induced coating of the phenolic resin‐silica block‐copolymer composites and self‐assembly of the mesostructure, and endows the composite monoliths with a diversity of macroporous architectures. Small‐angle X‐ray scattering, X‐ray diffraction and transmission electron microscopy results indicate that the obtained composite monoliths have an ordered mesostructure with 2D hexagonal symmetry (p6m) and good thermal stability. By simply changing the mass ratio of the resol to TEOS over a wide range (10–90%), a series of ordered, mesoporous composite foams with different compositions can be obtained. The composite monoliths with hierarchical macro/mesopores exhibit large pore volumes (0.3–0.8 cm3 g?1), uniform pore sizes (4.2–9.0 nm), and surface areas (230–610 m2 g?1). A formation process for the hierarchical porous composite monoliths on the struts of the PU foam through the evaporation‐induced coating and self‐assembly method is described in detail. This simple strategy performed on commercial PU foam is a good candidate for mass production of interface‐assembly materials. 相似文献
15.
Minjae Lee U. Hyeok Choi David Salas‐de la Cruz Anuj Mittal Karen I. Winey Ralph H. Colby Harry W. Gibson 《Advanced functional materials》2011,21(4):708-717
New bis(ω‐hydroxyalkyl)imidazolium and 1,2‐bis[N‐(ω‐hydroxyalkyl)imidazolium]ethane salts are synthesized and characterized; most of the salts are room temperature ionic liquids. These hydroxyl end‐functionalized ionic liquids are polymerized with diacid chlorides, yielding polyesters containing imidazolium cations embedded in the main chain. By X‐ray scattering, four polyesters are found to be semicrystalline at room temperature: mono‐imidazolium‐C11‐sebacate‐C6 ( 4e ), mono‐imidazolium‐C11‐sebacate‐C11 ( 4c ), bis(imidazolium)ethane‐C6‐sebacate‐C6 ( 5a ), and bis(imidazolium)ethane‐C11‐sebacate‐C11 ( 5c ), all with hexafluorophosphate counterions. The other imidazolium polyesters, including all those with bis(trifluoromethanesulfonyl)imide (TFSI?) counterions, are amorphous at room temperature. Room temperature ionic conductivities of the mono‐imidazolium polyesters (4 × 10?6 to 3 × 10?5 S cm?1) are higher than those of the corresponding bis‐imidazolium polyesters (4 × 10?9 to 8 × 10?6 S cm?1), even though the bis‐imidazolium polyesters have higher ion concentrations. Counterions affect ionic conduction significantly; all polymers with TFSI? counterions have higher ionic conductivities than the hexafluorophosphate analogs. Interestingly, the hexafluorophosphate polyester, 1,2‐bis(imidazolium)ethane‐C11‐sebacate‐C11 ( 5c ), displays almost 400‐fold higher room temperature ionic conductivity (1.6 × 10?6 S cm?1) than the 1,2‐bis(imidazolium)ethane‐C6‐sebacate‐C6 analog ( 5a , 4.3 × 10?9 S cm?1), attributable to the differences in the semicrystalline structure in 5c as compared to 5a . These results indicate that semicrystalline polymers may result in high ionic conductivity in a soft (low glass tranition temperature, Tg) amorphous phase and good mechanical properties of the crystalline phase. 相似文献
16.
T. Asefa M. Kruk M. J. MacLachlan N. Coombs H. Grondey M. Jaroniec G. A. Ozin 《Advanced functional materials》2001,11(6):447-456
We report the sequential transformation of vinyl groups into hydroborate and alcohol as well as vinyl into epoxide and diol functional groups in hexagonal mesoporous vinylsilica materials, denoted meso‐vinyl‐SiO2. The first transformation proceeds quantitatively through the hydroborylated derivative. After appropriate quenching, the hydroborylated materials are stable at ambient conditions and can undergo transformation into alcohols and various other functional groups. The pore volume and pore size uniformity were found not to be greatly affected by quenching of the hydroboranes with methanol, but they were reduced by quenching with water due to the deposition of boron‐containing species in the channels. Complete conversion of hydroborylated materials to alcohol‐functionalized materials required basic conditions and treatment time of several hours. Although this led to a significant structural shrinkage, decrease in pore volume, and decrease in ordering, there was no evidence of a partial collapse or removal of substantial parts of the pore walls under optimized synthesis conditions. This is the first successful conversion of organic groups of a functionalized ordered mesoporous silica host in alkaline solution, conditions known to be detrimental for silica frameworks. Epoxidation of the vinyl groups and subsequent conversion of the resulting epoxides into diols are also briefly described. The chemical transformation through epoxidation affords ordered mesoporous silica materials functionalized with potentially chiral organic groups, which could find applications in asymmetric catalysis and chiral separations. It was found that the epoxidation was slower than hydroboration and resulted in a lower degree of conversion. These two examples of hydroboration–alcoholysis and epoxidation–ring opening reactions of terminally bonded vinyl groups in meso‐vinyl‐SiO2 demonstrate the novel concept of sequential organic chemical transformations harbored inside the ordered channels of mesoporous organosilica materials. 相似文献
17.
L. I. Devriese L. Cools A. Aerts J. A. Martens G. V. Baron J. F. M. Denayer 《Advanced functional materials》2007,17(18):3911-3917
The adsorption of linear and branched C5–C9 alkanes in the temperature range 50–250 °C on mesoporous MCM‐48 material and its microporous/mesoporous variant Zeotile‐2 at low surface coverage is investigated using the pulse chromatographic technique. On MCM‐48, the differences in adsorption between linear and branched alkanes are merely a result of differences in volatility, indicating that the MCM‐48 material does not present shape‐selective adsorption sites. On Zeotile‐2, there is a preferential adsorption of linear over branched alkanes. The difference arises from a difference in adsorption entropy rather than enthalpy. Upon their adsorption on Zeotile‐2 branched alkanes lose relatively more entropy than their linear isomers do. Zeolitic molecular pockets embedded in the walls of the mesoporous Zeotile‐2 impose steric constraints on the bulky isoalkanes. Zeotile‐2 combines adsorption properties from microporous and mesoporous materials. Compared to the nitrogen molecule, linear and branched C5–C9 alkanes are superior probes for investigating micropores and micropockets in hierarchical materials. 相似文献
18.
Yan He Kangren Kong Zhengxi Guo Weifeng Fang Zaiqiang Ma Haihua Pan Ruikang Tang Zhaoming Liu 《Advanced functional materials》2021,31(26):2101291
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy. 相似文献
19.
Breaking the Limits of Ionic Liquid‐Based Supercapacitors: Mesoporous Carbon Electrodes Functionalized with Manganese Oxide Nanosplotches for Dense,Stable, and Wide‐Temperature Energy Storage 下载免费PDF全文
Feili Lai Jianrui Feng Runyu Yan Gui‐Chang Wang Markus Antonietti Martin Oschatz 《Advanced functional materials》2018,28(36)
Manganese oxide (MnO2) nanosplotches (NSs) are deposited on N‐ and S‐doped ordered mesoporous carbon (N,S‐CMK‐3) essentially blocking microporosity. The obtained N,S‐CMK‐3/MnO2 composite materials are assembled into ionic liquid (IL)‐based symmetric supercapacitors, which exhibit a high specific capacitance of 200 F g?1 (0–3.5 V) at a scan rate of 2 mV s?1, and good rate stability with 55.5% capacitance retention at a scan rate of 100 mV s?1. The device can operate in a wide temperature range (?20 to 60 °C), and high cycling stability of N,S‐CMK‐3/MnO2 composite electrode is demonstrated. Lower energy of ?3.56 eV can be achieved for the adsorption of 1‐ethyl‐3‐methylimidazolium+ (EMIM+) cation on the edge between MnO2 NSs and N,S‐CMK‐3 than on the plane of MnO2 NS (?3.04 eV), both being more preferred than the surface of pristine N,S‐CMK‐3 (?1.52 eV). This strengthening of the ion adsorption at the three‐phase boundary between N,S‐CMK‐3, MnO2, and IL leads to enhancement of the specific capacity as compared to nondoped or MnO2‐free reference materials. Supercapacitors based on such composite electrodes show significantly enhanced areal capacity pointing to energy storage in the mesopores rather than in the electrochemical surface layer, demonstrating a new energy storage mechanism in ILs. 相似文献
20.
J.C. Yu X.‐C. Wang L. Wu W.‐K. Ho L.‐Z. Zhang G.‐T. Zhou 《Advanced functional materials》2004,14(12):1178-1183
A sono‐ and photochemical approach has been developed to incorporate highly dispersed gold nanoclusters into mesoporous TiO2 films. The first step involves the sonication of a TiO2 film immersed in a gold chloride solution. This effectively removes the air trapped in the porous film matrix and drives the gold chloride into the pore channels, leading to a homogeneous adsorption of ionic Au in the TiO2 mesoporous matrix. The second step takes advantage of the photocatalytic property of TiO2 to reduce the adsorbed Au ions to Au0. As the gold nanoclusters thus produced are stabilized by the TiO2 mesonetwork, no organic capping molecules are required. Highly dispersed Au/TiO2 nanoheterojunction arrays can be obtained using this interesting approach. 相似文献