首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用扫描电子显微镜、光学显微镜、抽提实验和热重分析方法研究了导电炭黑在聚丙烯/环氧树脂共混物中的分布。结果表明,在共混物中,炭黑优先分布在具有高极性、低熔融黏度的环氧树脂相中,形成较强的相互作用。炭黑的加入改变了环氧树脂分散相的形貌,使其由球形颗粒转变为伸长结构。在共混物中加入相容剂,环氧树脂颗粒的尺寸显著减小,导致聚丙烯/环氧树脂/炭黑复合体系的电阻率升高。将炭黑先与聚丙烯熔融共混,再加入环氧树脂,部分炭黑从聚丙烯相向环氧树脂相迁移,这进一步证明了炭黑和环氧树脂之间有较强的亲和作用。  相似文献   

2.
The volume resistivity and percolation thresholds of carbon black (CB) filled polypropylene (PP), PP/epoxy, and PP/epoxy/glass fiber (GF) composites were measured. The morphology of these conductive polymer composites was studied with scanning electron microscopy (SEM). The effects of the GF and epoxy contents on the volume resistivity were also investigated. The PP/epoxy/GF/CB composite exhibited a reduced percolation threshold, in comparison with that of the PP/CB and PP/epoxy/CB composites. At a given CB content, the PP/epoxy/GF/CB composite had a lower volume resistivity than the PP/CB and PP/epoxy/CB composites. SEM micrographs showed that CB aggregates formed chainlike structures and dispersed homogeneously within the PP matrix. The addition of the epoxy resin to PP resulted in the preferential location of CB in epoxy, whereas in the PP/epoxy/GF multiphase blends, because of the good affinity of CB to epoxy and of epoxy to GF, CB particles were located in the epoxy phase coated on GF. The decreased percolation threshold and volume resistivity indicated that conductive paths existed in the PP/epoxy/GF/CB composite. The conductive paths were probably formed through the interconnection of GF. Appropriate amounts of GF and epoxy should be used to decrease the volume resistivity and provide sufficient epoxy coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1142–1149, 2005  相似文献   

3.
The crystallization behavior of polypropylene (PP)/carbon black (CB) and PP/epoxy/CB composites was studied with differential scanning calorimetry (DSC). The effects of compatibilizer MAH‐g‐PP and dynamic cure on the crystallization behavior are investigated. The nonisothermal crystallization parameters analysis showed that CB particles in the PP/CB composites and the dispersed epoxy particles in the PP/epoxy composites could act as nucleating agents, accelerating the crystallization of the composites. Morphological studies indicated that the incorporation of CB into PP/epoxy resulted in its preferential localization in the epoxy resin phase, changing the spherical epoxy particles into elongated structure, and thus reduced the nucleation effect of epoxy particles. Addition of MAH‐g‐PP significantly decreased the average diameter of epoxy particles in the PP/epoxy and PP/epoxy/CB composites, promoting the crystallization of PP more effectively. The isothermal crystallization kinetics and thermodynamics of the PP/CB and PP/epoxy/CB composites were studied with the Avrami equation and Hoffman theory, respectively. The Avrami exponent and the crystallization rate of the PP/CB composites were higher than those of PP, and the free energy of chain folding for PP crystallization decreased with increasing CB content. Addition of MAH‐g‐PP into the PP/epoxy and PP/epoxy/CB composites increased the crystallization rate of the composites and decreased the chain folding energy significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 104–118, 2006  相似文献   

4.
Blends of polypropylene/ethylene octene comonomer (PP/EOC) with conducting fillers viz., carbon black (CB) and multiwall carbon nanotubes (MWNT) were prepared using melt mixing technique with varying filler concentration and blend compositions. Thermo gravimetric analysis studies indicated that presence of filler enhanced the thermal stability of PP/EOC blends. Morphological analysis revealed the formation of matrix‐dispersed droplet and co‐continuous type of morphology depending on the blend compositions. Significant reduction in droplet size and finer ligament thickness in co‐continuous structure were observed in the blends with filler due to compatibilization action. Fillers were found to be aggregated in the EOC phase irrespective of blends compositions and could be related to the affinity of the fillers toward EOC phase. The electrical conductivity of PP/EOC blends with CB and MWNT was found to be highest for 80/20 composition and decreased as EOC content increased. The percolation threshold of CB was between 10 and 15 wt% for the 80/20 and 70/30 blends whereas it was 15–20 wt% for blends with EOC content higher than 30 wt%. The percolation threshold was 2–3 wt% MWNT for PP/EOC blends. This was attributed to the aggregated filler network preferentially in the EOC phase. The melt‐rheological behavior of PP/EOC blends was significantly influenced in presence of both the fillers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

6.
This study investigates the electrical behavior, which is the positive temperature coefficient/negative temperature coefficient (PTC/NTC), and structure of polypropylene (PP)/ultrahigh molecular weight polyethylene (UHMWPE)/carbon black (CB) and PP/γ irradiated UHMWPE (XL‐UHMWPE)/CB blends. As‐received UHMWPE or XL‐UHMWPE particles are chosen as the dispersed phase because of their unusual structural and rheological properties (extremely high viscosity), which practically prevent CB particles penetration. Because of their stronger affinity to PE, CB particles initially form conductive networks in the UHMWPE phase, followed by distribution in the PP matrix, thus interconnecting the CB‐covered UHMWPE particles. This unusual CB distribution results in a reduced electrical percolation threshold and also a double‐PTC effect. The blends are also investigated as filaments for the effect of shear rate and processing temperature on their electrical properties using a capillary rheometer. Because of the different morphologies of the as‐received and XL‐UHMWPE particles in the filaments, the UHMWPE containing blends exhibit unpredictable resistivities with increasing shear rates, while their XL‐UHMWPE containing counterparts depict more stable trends. The different electrical properties of the produced filaments are also related to differences in the rheological behavior of PP/UHMWPE/CB and PP/XL‐UHMWPE/CB blends. Although the flow mechanism of the former blend is attributed to polymer viscous flow, the latter is attributed to particle slippage effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 104–115, 2001  相似文献   

7.
Abstract

A new method concerning the simultaneous reinforcing and toughening of polypropylene (PP) is reported. Dynamic cure of the epoxy resin with 2-ethylene-4-methane-imidazole was successfully applied in the PP/maleic anhydride grafted styrene–ethylene–butylene–styrene (MAH-g-SEBS) triblock co-polymer, and the obtained blends were named as dynamically cured PP/MAH-g-SEBS/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of the epoxy particle in the PP/MAH-g-SEBS/epoxy blends shows that MAH-g-SEBS was also used as a compatibiliser. The structure of the dynamically cured PP/MAH-g-SEBS/epoxy blends is the embedding of the epoxy particles by MAH-g-SEBS. The cured epoxy particles as organic filler increase the stiffness of the PP/MAH-g-SEBS blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing epoxy resin content, and the impact strength reaches a maximum of 342 J m?1 at the epoxy resin content of 10wt-%. Differential scanning calorimetry analysis shows that the epoxy particles in the dynamically cured PP/MAH-g-SEBS/epoxy blends could have contained embedded MAH-g-SEBS, decreasing the nucleating effect of the epoxy resin. Wide angle X-ray diffraction analysis shows that the dynamical cure and compatibilisation do not disturb the crystalline structure of PP in the blends.  相似文献   

8.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The influence of carbon black (CB) and multiwall carbon nanotubes (CNT) with different colloidal properties on the phase morphology, electrical properties, and rheological behavior in a polypropylene (PP)/poly(methyl methacrylate) (PMMA)/ethylene acrylic acid copolymer (EAA) ternary polymer blend was studied. A PP/PMMA/(EAA‐CNT) system was compared to two different PP/PMMA/(EAA‐CB) systems. The relationship between the phase morphology, electrical percolation threshold, and rheological behavior was analyzed. The critical percolation threshold for the ternary system was found to be around 0.5 vol% for the PP/PMMA/(EAA‐CB1) and 0.2 vol% for the PP/PMMA/(EAA‐CB2) and PP/PMMA/(EAA‐CNT), which were more than 8 times lower than for the single phase systems. The rheological threshold coincided with the electrical resistivity percolation threshold inversion point. It was proposed that beyond a critical loading of conductive filler particles in the minor EAA phase, especially for high aspect ratio fillers such as the CB2 and CNT, phase separation is slowed significantly due to the aggregation of particles into a network formation within the EAA phase causing a significant increase in phase viscosity. The results are consistent with the hypothesis that the kinetics of phase separation and resulting formation of a tri‐continuous morphology are dictated by the viscosity of the minor phase relative to the two major phases. POLYM. ENG. SCI., 57:1329–1339, 2017. © 2017 Society of Plastics Engineers  相似文献   

10.
熊辉  张清华  陈大俊 《化学世界》2007,48(11):661-663,667
以聚丙烯和低密度聚乙烯共混物为基体,用碳黑为填充材料制备了复合导电材料,导电性能的测试表明多相复合体系的渗滤阈值低于两相复合体系的渗滤阈值。对复合材料PTC效应的分析以及对材料的热性能测试结果表明碳黑在共混体系中的分布。同时探讨了体系碳黑含量的变化对PTC效应的影响。  相似文献   

11.
The electrical and rheological behaviors of carbon black (CB)‐filled immiscible polypropylene (PP)/polystyrene (PS) blends were investigated. The compounding sequence influences the phase morphology of the ternary CB/PP/PS composites and the distribution of CB aggregates. Simultaneous measurements of resistance and dynamic modulus were carried out to monitor the phase coalescence of the ternary composites and CB migration and agglomeration in the PS phase during annealing at temperatures above the melting point of PP. The variation of resistivity is mainly attributed to CB agglomeration in the PS phase and the interfacial region, while the variation of dynamic modulus is regarded as the superimposition of the phase coalescence and CB agglomeration in the PS phase. The ternary composites with the majority of CB particles distributed in the interfacial region show the lowest conductive percolation threshold and the most stable resistivity–temperature performance during heating–cooling cycles. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Carbon black (CB) containing polypropylene/nylon (PP/Ny) blends, processed slightly below the melting temperature (Tm) of the dispersed Ny phase, leads to formation of fibrillar Ny phase and electrically anisotropic systems. CB containing PP/Ny blends were compounded (twin screw extruder) and processed (injection molding) slightly below the Tm of dispersed Ny phase at different blending sequences. To establish structure–property relationships scanning electron microscopy, high resolution scanning electron microscopy, differential scanning calorimeter were used and electrical properties were also studied. Addition of CB to binary PP/Ny blends, processed below the Ny Tm, altered the Ny fibrillation process forming an irregular continuous phase, containing the CB particles, rather than the fibrils formed in the PP/Ny blends. Yet, upon changing the processing sequence, i.e., compounding PP and CB and then adding Ny in the injection molding stage, Ny fibrils were attained, maintaining phase continuity, oriented in the flow direction and CB particles preferentially located on their surfaces. Blends exhibiting a fibrillar Ny network covered by CB particles exhibited electrical anisotropy. The Ny fibrils exhibited an additional higher crystalline melting peak and molecular orientation. The composites are conductive in the Ny fibril direction, while insulating in the perpendicular direction. Once the CB is located within both, the Ny and the PP matrix the electrical behavior is isotropic. POLYM. ENG. SCI., 46:1250–1262, 2006. © 2006 Society of Plastics Engineers  相似文献   

14.
By calculating the surface tensions of the components, composites with innovative thermodynamically induced self‐assembled electrically conductive networks were designed, prepared and investigated. Carbon black (CB) was added into a ternary blend system comprised of poly(methyl methacrylate) (PMMA), ethylene–acrylic acid copolymer (EAA) and polypropylene (PP). Scanning electron microscopy images show that the PMMA/EAA/PP ternary blend forms a tri‐continuous phase structure like a sandwich, in which PMMA and PP form a co‐continuous phase while EAA spreads at the interface of the PMMA and PP phases as a sheath. The micrographs and resistivity–temperature characteristic curve results indicate that CB fillers are selectively located at the interface of the PMMA and PP phases, namely the EAA phase. The percolation threshold of PMMA/EAA‐CB/PP composites is 0.2 vol%, which is only one‐fifth of that of PP/CB composites. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Selective localization of carbon black (CB) at the interface of polymer blends was achieved by the method that poly(styrene-co-maleic anhydride) (SMA) was first reacted with CB, and then blended with nylon6/polystyrene (PA6/PS). In the PA6/PS blends, CB was localized in PA6 phase and typical double percolation was exhibited. In the PA6/PS/(SMA–CB) blends, TEM results showed that CB particles were induced by SMA to localize at the interface, resulting in the especial interface morphology fabricated by SMA and CB. The especial interface morphology of PA6/PS/(SMA–CB) caused distinct triple percolation behavior and very low percolation threshold. The positive temperature coefficient (PTC) intensity of PA6/PS/(SMA–CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient (NTC) effect was eliminated. The elimination of NTC effect was arisen from the especial interface morphology. A stronger PTC intensity was attributed to the low percolation threshold and the morphology.  相似文献   

16.
We have established that the PP/PA6/CB composite with 3D microfibrillar conducting network can be prepared in situ using melt spinning process. CB particles preferably were localized at the interface between polypropylene as the matrix and PA6 microfibrils, which act as the conducting paths inside the matrix. The percolation threshold of the system reduced when aspect ratio of the conducting phase was increased by developing microfibrillar morphology. The effect of annealing process on the conductivity of PP/PA6/CB composite with co‐ continuous and microfibrillar morphologies was studied. It was observed that, annealing process forces CB particles towards the interface (2D space) of PP and PA6 co‐continuous phases, and percolation threshold and critical exponent of classical percolation theory will be decreased, while the conductivity of conducting composite with microfibrillar morphology was not affected considerably by annealing process at temperatures either higher or lower than the melting point of the PA6 microfibrils. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
聚丙烯/炭黑复合材料的导电逾渗行为和PTC特性   总被引:2,自引:0,他引:2  
以聚丙烯(PP)为基体、炭(黑CB)为填料制备复合材料,研究了不同CB种类的PP/CB复合材料的导电逾渗行为和电阻正温度系数效(应PTC)特性,同时利用扫描电镜对复合材料的微观形态进行了分析。结果表明:CB的结构性越高,比表面积越大,则其填充的复合材料逾渗阈值越低,PP/VulcanXC-72体系的逾渗阈值约为2.5%,而PP/40B2体系约为3.5%;CB的比表面积越小,结构性越低,则相同质量分数时其填充的复合体系的PTC强度越大P,P/40B2体系的PTC强度大于PP/VulcanXC-72体系。  相似文献   

18.
Electrical resistivity and morphology of high impact polystyrene (HIPS)/styrene-isoprene-styrene copolymer (SIS)/carbon black (CB) blends were studied. Conductive CB particles locale preferentially within the HIPS phase of the HIPS/SIS blends. The blends studied remain conductive as long as HIPS maintains a continuous phase and the effective CB concentration within HIPS surmounts its percolation threshold. Thus, blends containing 2 phr CB depict significant changes in resistivity with the HIPS/SIS composition, transforming from insulative to conductive. SIS/CB mixtures exhibit an unusual behavior, explained by a physical model suggested in this paper and extended to the HIPS/SIS/CB systems.  相似文献   

19.
In this work, maleic anhydride‐grafted polypropylene (PP‐g‐MAH) and maleic anhydride‐grafted poly(acrylonitrile‐butadiene‐styrene) (ABS‐g‐MAH) at 2 : 1 mass ratio were added as a compatibilizer in the PP/ABS blends. The compatibilizing effect was evaluated by adding the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ). The reaction in reactive extrusion, morphological structure, and properties of PP and ABS blends were investigated by using infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray spectrum, transmission electron microscope (TEM), dynamic thermomechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical properties tests. The results showed that the compatibilizing effect was greatly improved because of the addition of the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ) because the link structure of PP‐g‐MAH and ABS‐g‐MAH was formed by the reaction of anhydride group with epoxy group catalyzed by the imidazole. The size of the dispersed phase decreased dramatically, the interfacial adhesion between ABS particles and PP matrix was improved, and the tensile strength and flexural modulus of the PP/ABS blends increased further. The optimizing properties were obtained at 3 phr E51/2E4MZ. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40898.  相似文献   

20.
This paper discusses the feasibility of the application of conductive immiscible polymer blends as sensor materials for detection of organic liquid solvents. Immiscible polymer blends of polypropylene (PP), nylon 6 (Ny6) and carbon black (CB) have been used to produce a series of electrically conductive filaments by a capillary rheometer process. In these immiscible blends, PP serves as a semi‐crystalline matrix and Ny6 as the semi‐crystalline dispersed phase. The enhancement of conductivity in these blends is due to the attraction of CB to Ny6 and localization of CB particles at the PP/Ny6 interface, giving rise to conductive networks. The dc electrical resistivity of extruded filaments, produced at different shear levels, is found to be sensitive to various organic liquid solvents. The shear rate at which the filaments are produced has an important effect on the PP/Ny6/CB filament's sensitivity. The compositions studied were close to the double‐percolation structure believed to perform best as sensor materials. In addition, it seems that the PP/Ny6 interface plays a major role in the sensing process. Liquid contact/drying cycling of the filaments indicates stabilization of the sensitivity change making the sensing process reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号