首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
Abstract— Tiled displays provide high resolution and large scale simultaneously. Projectors can project on any available surface. Thus, it is possible to create a large high‐resolution display by simply tiling multiple projectors on any available regular surface. The tremendous advancement in projection technology has made projectors portable and affordable. One can envision displays made of multiple such projectors that can be packed in one's car trunk, carried from one location to another, deployed at each location easily to create a seamless high‐resolution display, and, finally, dismantled in minutes to be taken to the next location — essentially a pack‐and‐go display. Several challenges must be overcome in order to realize such pack‐and‐go displays. These include allowing for imperfect uncalibrated devices, uneven non‐diffused display surfaces, and a layman user via complete automation in deployment that requires no user invention. We described the advances we have made in addressing these challenges for the most common case of planar display surfaces. First, we present a technique to allow imperfect projectors. Next, we present a technique to allow a photometrically uncalibrated camera. Finally, we present a novel distributed architecture that renders critical display capabilities such as self‐calibration, scalability, and reconfigurability without any user intervention. These advances are important milestones towards the development of easy‐to‐use multi‐projector displays that can be deployed anywhere and by anyone.  相似文献   

2.
MEMS (microelectromechanical systems) are used in many fields including display applications, which are extensively studied both in academia and industry. For practical devices, numbers of advanced technologies have been developed based on MEMS concept. For display technologies, projection displays, reflective displays, transmissive displays and other display modes have been achieved by different MEMS modes. In this review, the current MEMS-based display technologies are introduced and discussed including digital micromirror device (DMD), laser scanning display (LSD), interferometric modulator display (IMOD), digital micro-shutter (DMS), time multiplexed optical shutter (TMOS), grating light valve (GLV) and others. The typical structure and fundamental of each display mode are interpreted.  相似文献   

3.
Since high dynamic range (HDR) displays are not yet widely available, there is still a need to perform a dynamic range reduction of HDR content to reproduce it properly on standard dynamic range (SDR) displays. The most common techniques for performing this reduction are termed tone‐mapping operators (TMOs). Although mobile devices are becoming widespread, methods for displaying HDR content on these SDR screens are still very much in their infancy. While several studies have been conducted to evaluate TMOs, few have been done with a goal of testing small screen displays (SSDs), common on mobile devices. This paper presents an evaluation of six state‐of‐the‐art HDR video TMOs. The experiments considered three different levels of ambient luminance under which 180 participants were asked to rank the TMOs for seven tone‐mapped HDR video sequences. A comparison was conducted between tone‐mapped HDR video footage shown on an SSD and on a large screen SDR display using an HDR display as reference. The results show that there are differences between the performance of the TMOs under different ambient lighting levels and the TMOs that perform well on traditional large screen displays also perform well on SSDs at the same given luminance level.  相似文献   

4.
Abstract— Electron field‐emission displays offer a viable option for the next generation of flat‐panel screens. Boasting high‐quality images in terms of good color saturation, fast refresh rate, and high brightness, these displays have the potential to offer above and beyond what the current market leaders, LCD and plasma. However, for the realization of such a new display disrupting the incumbent LCD and plasma displays, not only does the image quality need to be better, but fabrication costs and suitable manufacturing processes need to be in place at reduced cost. Many viable cathode materials have been proposed in recent years, one of which being the use of carbon nanotubes (CNTs) in various forms (aligned growth, screen printing, and polymer matrix). In this review, a series of recent experiments investigating the field‐emission characteristics of carbon‐nanotube systems for possible use in the display industry is presented.  相似文献   

5.
Abstract— The investigation of visual‐quality issues for high‐contrast projection screens such as those used for avionics projection displays and other applications requiring a high level of ambient light rejection will be described. Visibility of artifacts and noise generated by the optical and structural properties of a variety of high‐contrast projection screens was characterized by both empirical, subjective image quality evaluations and a suite of objective screen‐quality metrics. At least two of these metrics were found to provide very good correlation with the subjective assessment. These metrics are applicable to any display system where spatial‐noise artifacts are an issue, such as with direct‐view AMLCDs with anti‐glare treatments.  相似文献   

6.
Abstract— The materials and fabrication aspects of flexible displays will be reviewed. The fabrication of flexible displays requires the consideration of proper material selection, handling of plastic‐film substrates, and a low‐temperature process for the fabrication of active‐matrix devices on plastic substrate. In addition, for the low‐cost fabrication approach, direct printing of active‐matrix patterning without a photolithography process is also required. Before commercial‐level production of flexible displays is considered, the factors of product reliability and practical value are considered. Samsung LCD Division's approach to the fabrication of flexible displays and future plans to develop a practical method that will lead to the production level of flexible displays will also be described.  相似文献   

7.
《Ergonomics》2012,55(8):1158-1172
Abstract

In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures.

Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants’ performance and increased the probability of detecting unexpected system failures.  相似文献   

8.
The last few years have witnessed extraordinary advances in medical imaging. The new digital methods, such as CT or MRI, share the common characteristic of providing three-dimensional volume data. The urgent need for efficient techniques for visualizing volume data has recently been recognized not only in diagnostic medicine, but also in computer-assisted surgery and radiation-therapy planning. In recent years, new display technologies have emerged, in which depth perception has been improved significantly, because it relies in principle on physiological depth cues. This paper presents the state-of-theart is true 3D displays (with a special emphasis placed on equipment that has reached relative maturity) and a discussion of their most important advantages and disadvantages with respect to visualizing medical data.  相似文献   

9.
Abstract— As digital display systems replace film traditionally used for reading radiographic images, resource‐intensive acceptance testing must be performed to ensure that quality meets and maintains desired specifications. If machine observers can replace human readers, whose performances are highly variable, the results will be more consistent and less costly. To be effective, however, the automated observers must track human performance. An approach for a model observer, validated with human readers, for the evaluation of the visibility of low‐contrast small targets in high‐resolution and mobile displays under different ambient illumination, will be described. The displays were tested using CDMAM‐like digital phantoms containing disks of varying diameters and contrasts on a flat background. For this task, we find the best indicator of display performance to be the display's ability to represent small luminance contrast, not resolution or pixel size. The results confirm that high‐resolution systems perform better under low illumination while illuminance has a minor impact on the mobile‐display performance. Finally, the results show that the machine observer tracks the performance of human readers. Machine observers with proper validation can replace humans in the acceptance testing procedures, saving the testers both time and money.  相似文献   

10.
Abstract— A low‐temperature polysilicon active‐matrix process without the need for ion implantation to dope drain and source areas of TFTs has been developed. A doped silicon layer is deposited by PECVD and structured prior to the deposition of the intrinsic silicon for the channel. The dopant is diffused and activated during the excimer‐laser crystallization step. N‐channel test TFTs with different geometries were realized. The TFT properties (mobility, on/off ratio, saturation, etc.) are suitable to realize AMLCDs and AMOLED displays and to integrate driver electronics on the displays. In addition to simple TFTs, a full‐color 4‐in. quarter‐VGA AMLCD was realized. The complete display (including photolithographic masks, active‐matrix backplane, and color‐filter/black‐matrix frontplane), and an addressing system were developed and manufactured at the Chair of Display Technology, University of Stuttgart, Germany. The substitution of ion doping by PECVD deposition overcomes a major limitation for panel sizes in poly‐Si technology and avoids large investment costs for ion‐implantation equipment.  相似文献   

11.
There has been a long-standing need for wide angle computer graphics displays that are both visually accurate geometrically and at the same time adaptable to different user environments. This paper reviews a progression of wide angle simulations that have been developed to meet this continuing need. There have been three progressive stages in this development, spanning twenty years and three institutions. The first stage, at Boeing in the 1960s, first demonstrated line plots in true perspectives projected inside the Boeing Spacearium hemisphere. The second stage, developed at Southern Illinois University, solved the problems of ‘folding’ and examined sample mapping and architectural applications. The third stage is currently under development at Southern Illinois Research Institute US. This consists of developing further strategies for displays appropriate to colour raster terminals and will explore sample applications at Siggraph '84 and potential hardware techniques.  相似文献   

12.
Abstract— In recent years, the majority of R&D for large‐area displays has been to serve the production of large monolithic substrate technology such as plasma‐display panels (PDPs) and TFT‐LCD. While the pursuit of large displays for domestic and light‐industrial use benefits from the production of these high‐quality high‐pixel‐count technologies, there is still a need to produce displays in formats other than 4:3 or 16:9 and on a larger scale than currently available in single‐substrate displays. The options that exist for producing tiled displays from emerging technologies is examined and a practical technique for creating large‐area (1.8 × 1.2 m and larger) monochrome or color displays from tiling smaller units is discussed. This presents a cost‐effective approach for arranging small tiles to create a much larger screen and offers a simple way to address the market gap between large monolithic displays and small conventional LED video‐wall displays, in the size range of 1–10‐mm pixels for advertising and industrial use. By examining the requirements for pixel size and pitch against the range of viewing distances commonly associated with the target markets for these displays, it will be shown that complex manufacturing is not always required.  相似文献   

13.
Abstract— We propose a novel data‐line multiplexing technique for low‐cost/high‐resolution active‐matrix liquid‐crystal displays (AMLCDs). This scheme reduces the number of data lines and driver chips required by one‐half without enormous multiplexing circuits. Another advantage of applying this technique is the reduction in power consumption. We demonstrated the technical feasibility of this method with application prototypes up to 15‐in. SXGA+ (1400 × 1050 pixels) AMLCDs with amorphous‐silicon (a‐Si) thin‐film‐transistor (TFT) technology. In this paper, we provide an explanation of the addressing mechanism in detail and clarify the feasibility with further technical discussion.  相似文献   

14.
Glasses-free automultiscopic displays are on the verge of becoming a standard technology in consumer products. These displays are capable of producing the illusion of 3D content without the need of any additional eyewear. However, due to limitations in angular resolution, they can only show a limited depth of field, which translates into blurred-out areas whenever an object extrudes beyond a certain depth. Moreover, the blurring is device-specific, due to the different constraints of each display. We introduce a novel display-adaptive light field retargeting method, to provide high-quality, blur-free viewing experiences of the same content on a variety of display types, ranging from hand-held devices to movie theaters. We pose the problem as an optimization, which aims at modifying the original light field so that the displayed content appears sharp while preserving the original perception of depth. In particular, we run the optimization on the central view and use warping to synthesize the rest of the light field. We validate our method using existing objective metrics for both image quality (blur) and perceived depth. The proposed framework can also be applied to retargeting disparities in stereoscopic image displays, supporting both dichotomous and non-dichotomous comfort zones.  相似文献   

15.
Abstract— This paper is a review of stereoscopic 3‐D display technologies and testing methods. The first part addresses the different 3‐D displays with focus on technologies. It gives both a background and the logic to group the technologies into categories. A family‐tree chartsummarizes the technology map. This categorization allows for logical grouping of test methods. The second part is a summary of testing procedures developed as part of the ICDM (International Committee for Display Metrology) standards group, affiliated with SID (Society of Information Display). Definitions to key test parameters pertinent to the evaluation of stereoscopic 3‐D displays including formulae development will be presented. This review paper can serve as an introduction to the 3‐D & Stereoscopic Displays chapter of the IDMS (Information Display Measurement Standard) version 1.0 that will be issued by the ICDM group later this year. The IDMS v1.0 will be the successor of the FPDM‐2 from VESA.  相似文献   

16.
Assuming that large color gamut and therefore better color reproducibility will be a highly desired feature of all displays as we look to the near future, we make the case in this paper that quantum dots (QDs) are currently the down‐conversion technology of choice that will allow liquid crystal display makers to cost‐effectively reach and exceed 100% of the NTSC (National Television Standard Committee) and Adobe RGB color standards while achieving maximum system efficiency. We will discuss in detail the numerous fundamental advantages of QDs over phosphors, along with their scientific origins, and make the case that QDs are the ultimate light generating material for next‐generation displays.  相似文献   

17.
Ji Ma  Li Xuan 《Displays》2013,34(4):293-300
Cholesteric liquid crystals (Ch-LCs) have been extensively studied due to their unique self-organized helical molecular structures and selective Bragg reflection properties, which exhibit great potentials for color displays and other practical applications. When functional, nanoscale molecular switches are doped in liquid crystals (LCs), the phases of the LCs or the molecular structures of the Ch-LCs can be changed upon the influence of external stimuli, such as light and temperature. In this paper, the photoresponsive molecular switch-based LCs for display applications are reviewed. The progress and effort in developing molecular switches, the principles of light-tuning, photo-addressed color displays, information processing, bistable displays and flexible displays are presented.  相似文献   

18.
Abstract— Autostereoscopic and polarization‐based stereoscopic 3‐D displays recreate 3‐D images by providing different images in the two eyes of an observer. This aim is achieved differently for these two families of 3‐D displays. It is shown that viewing‐angle measurements can be applied to characterize both types of displays. Viewing‐angle luminance measurements are made at different locations on the display surface for each view emitted by the display. For autostereoscopic displays, a Fourier‐optics instrument with an ultra‐high‐angular‐resolution VCMaster3D is used. For polarization‐based displays, a standard Fourier‐optics instrument with additional glass filters is used. Then, what will be seen by an observer in front of the display is computed. Monocular and binocular quality criteria (left‐ and right‐eye contrast, 3‐D contrast) was used to quantify the ability to perceive depth for any observer position. Qualified monocular and binocular viewing spaces (QMVS and QBVS) are deduced. Precise 3‐D characteristics are derived such as maximum 3‐D contrast, optical viewing freedom in each direction, color shifts, and standard contrast. A quantitative comparison between displays of all types becomes possible.  相似文献   

19.
Abstract— Demand for high‐quality images in mobile phones has set a new standard for displays in such portable devices. Active‐matrix liquid‐crystal displays (AMLCDs) are replacing passive‐matrix LCDs in these applications. One of the reasons is the lack of simple techniques for displaying a large number of gray shades. The goal was to develop new addressing techniques to fill this void, and it has been achieved without increasing the hardware complexity of the drive electronics. Various techniques that are capable of displaying a large number of gray shades with low hardware complexity of the driver circuit are reviewed.  相似文献   

20.
Abstract— Organic light‐emitting‐device (OLED) devices are very promising candidates for flexible‐display applications because of their organic thin‐film configuration and excellent optical and video performance. Recent progress of flexible‐OLED technologies for high‐performance full‐color active‐matrix OLED (AMOLED) displays will be presented and future challenges will be discussed. Specific focus is placed on technology components, including high‐efficiency phosphorescent OLED technology, substrates and backplanes for flexible displays, transparent compound cathode technology, conformal packaging, and the flexibility testing of these devices. Finally, the latest prototype in collaboration with LG. Phillips LCD, a flexible 4‐in. QVGA full‐color AMOLED built on amorphous‐silicon backplane, will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号