首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermosensitive and water‐soluble copolymers were prepared through the copolymerization of acryloyloxypropyl phosphinic acid (APPA) and N‐isopropyl acrylamide (NIPAAm). The thermosensitivity of the copolymers and copolymer/metal complexes was studied. The APPA–NIPAAm copolymers with less than 11 mol % APPA moiety had a lower critical solution temperature (LCST) of approximately 45°C, but the APPA–NIPAAm copolymers with greater than 21 mol % APPA moiety had no LCST from 25 to 55°C. The APPA–NIPAAm copolymers had a higher adsorption capacity for Sm3+, Nd3+, and La3+ than for Cu2+, Ni2+ and Co2+. The APPA–NIPAAm (10:90) copolymer/metal (Sm3+, Nd3+, or La3+) complexes became water‐insoluble above 45°C at pH 6–7, but the APPA–NIPAAm (10:90) copolymer/metal (Cu2+,Ni2+, or Co2+) complexes were water‐soluble from 25 to 55°C at pH 6–7. The temperature at which both the APPA–NIPAAm copolymers and the copolymer/metal complexes became water‐insoluble increased as the pH values of the solutions increased. The APPA–NIPAAm copolymers were able to separate metal ions from their mixed solutions when the temperature of the solutions was changed; this was followed by centrifugation of the copolymer/metal complexes after the copolymers were added to the metal solutions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 116–125, 2004  相似文献   

2.
The chelation behavior of poly(β‐diketone), polymer I, and poly(β‐diketone) oxime, polymer II, toward the divalent metal ions, Cu2+, Zn2+, Ni2+, and Cd2+, and the trivalent lanthanide metal ions, La3+, Nd3+, Sm3+, Gd3+, and Tb3+ was investigated by a batch equilibration technique as a function of contact time, pH, and counter ion. Polymer II exhibited improved chelation characteristics toward lanthanide metal ions in comparison with polymer I and the metal‐ion uptake follows the order Tb3+ ≈ Gd3+ ≈ Sm3+ > Nd3+ ≈ La3+. On the other hand, polymer I showed relatively higher capacity than polymer II, toward the investigated divalent metal ions, where the metal‐ion uptake follows the order Cu2+ > Cd2+ ≈ Zn2+ > Ni2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The applicability of atom transfer radical polymerization (ATRP) to the copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinyl-2-pyrrolidone (NVP) was examined in CuCl/CuCl2-catalyst system using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (Me4Cyclam) as ligands. In the Me6TREN system, less reactive NVP not only does not quantitatively copolymerize but also interferes with homopolymerization of NIPAAm units. In contrast, the Me4Cyclam system under heating was more active, although the controllability for polymer homogeneity is lower than Me6TREN system. The application of active Me4Cyclam system to surface-initiated ATRP has successfully prepared silica beads surface-modified with NIPAAm copolymers of NVP and 4-vinylpyridine (VPy). The thermo-responsive behavior of surface-grafted NIPAAm-based polymers was investigated for lanthanide trivalent ions (Ln(III)) in different pH solutions. In the weak acidic solutions of pH = 5.4–5.6, all the surface-grafted polymers including poly(NIPAAm) exhibited only adsorption behavior with regular selectivity (Eu3+ > Sm3+ > Nd3+ > Ce3+ > La3+) below the phase-transition temperatures. In the more acidic solution of pH = 2.9, the surface-grafted poly(NIPAAm) and NVP copolymers exhibited adsorption and desorption behaviors below and above the phase-transition temperatures, while VPy copolymers exhibited only adsorption independent of temperature change. Furthermore, the adsorption capacity of all the surface-grafted polymers was deteriorated by the lowering of pH. The observed desorption and the deterioration of adsorption capacity suggest the weakening of adsorption strength for Ln(III) in low pH solutions. In this study, a possible adsorption/desorption mechanism of Ln(III) on surface-grafted NIPAAm-based polymers is discussed.  相似文献   

4.
Thermosensitive 4VP‐NIPAAm‐4G copolymer beads containing pyridyl groups were first prepared by suspension copolymerization of 4‐vinylpyridine (4VP), N‐isopropylacrylamide(NIPAAm), and tetraethylene glycol dimethacrylate (4G; crosslinking reagent) in a saturated Na2SO4 aqueous solution in the presence of surfactant and MgCO3 as dispersants. Then the copolymer beads containing pyridinium groups were obtained by the quaternization of the copolymer beads with various alkyl iodides (CH3I, C4H9I, C8H17I) in N,N‐dimethylformamide. The 4VP‐NIPAAm‐4G (15 : 97 : 3) copolymer bead and the 4VP‐NIPAAm‐4G copolymer beads quaternized with butyl iodide exhibited high thermosensitivity in water, although the 4VP‐NIPAAm‐4G copolymer beads quaternized with methyl iodide or octyl iodide hardly exhibited thermosensitivity. All the quaternized copolymer beads exhibited antibacterial activity against Escherichia coli (E. coli), although the 4VP‐NIPAAm‐4G copolymer bead did not. In particular, the copolymer bead quaternized with butyl iodide exhibited the highest antibacterial activity against E. coli at 30°C. It was also found that the antibacterial activity of the quaternized 4VP‐NIPAAm‐4G copolymer beads was greatly affected by not only chain length of alkyl groups in alkyl iodides, with which the 4VP‐NIPAAm‐4G copolymer beads were quaternized, but also by temperature of the solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Acrylic acid (AA) was grafted onto the powdered isotactic polypropylene (i‐PP) with the electron‐beam‐induced preirradiation method (Chen, D.‐T.; Shi, N.; Xu, D.‐F. J Appl Polym Sci 1999, 73, 1357–1362). Some rare earth ions, including Sm3+, Nd3+, Eu3+, Gd3+, and Er3+, were adsorbed onto the grafting product PP‐g‐AA. The properties of Sm3+ adsorbed were investigated in detail. These properties include the influences of the adsorption time, acidity, ion concentration of the solution, grafting yield of AA onto i‐PP, and temperature on the quantity and efficiency of the ion adsorption. Some kinetic and thermodynamic equilibrium constants of the adsorption were obtained in the experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1549–1553, 2000  相似文献   

6.
ABSTRACT

The sorption and desorption properties of the chelate-forming phenol-formaldehyde resin, poly(8-hydroxyquinoline 5,7-diylmethylene) towards various trivalent lanthanide ions such as La+3, Ce+3, Nd+3, Sm+3, and Gd+3 were studied by a static batch equilibration technique as a function of pH and contact time. The resin selectivity and binding capacity towards various lanthanide metal ions are discussed.  相似文献   

7.
《分离科学与技术》2012,47(14):2963-2986
Abstract

For the functional enhancement of chelating resins containing carboxylic acids, copolymer beads were prepared by suspension polymerization of styrene (St), methyl methacrylate (MMA), and divinylbenzene (DVB) in the presence of toluene as diluent. The phenyl rings of the beads were directly chloromethylated, and the carboxylic ester groups of the beads were converted into hydroxymethyl groups by reduction followed by chlorination to give chloromethyl groups, respectively. The chelating resins containing a pair of neighboring carboxylic acid groups (NCAGs) were obtained by the alkylation of chloromethyl groups in copolymer beads with diethyl malonate in the presence of sodium hydride followed by hydrolysis using aqueous alkali solution. Accordingly, the structural effects of the resins on the adsorption of heavy metal ions were investigated. Poly(St‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, and Cu2+, whereas poly(MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Cu2+, Cd2+, and Co2+. On the other hand, poly(St‐co‐MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, Hg2+, Co2+, and Cu2+: a synergistic effect on the adsorption of heavy metal ions like Pb2+, Cd2+, Hg2+, and Co2+ was observed. The adsorption ability of poly(St‐co‐MMA‐co‐DVB)‐based chelating resin among three kinds of chelating resins was relatively good.  相似文献   

8.
PPy/graphene/rare earth ions (PPy/GR/La3+, PPy/GR/Sm3+, PPy/GR/Eu3+, PPy/GR/Gd3+ and PPy/GR/Tb3+) are fabricated via in-situ polymerization using p-toluenesulfonic acid as a dopant and FeCl3 as an oxidant. The surface morphology of the PPy/GR/La3+, PPy/GR/Sm3+, PPy/GR/Eu3+, PPy/GR/Gd3+ and PPy/GR/Tb3+ composites were characterized by using transmission electron microscopy. The maximum conductivity of PPy/GR/La3+, PPy/GR/Sm3+, PPy/GR/Eu3+, PPy/GR/Gd3+ and PPy/GR/Tb3+ composites found with 1 wt.% GR and 2 wt.% La3+, Sm3+, Eu3+, Gd3+ and Tb3+ at room temperature.  相似文献   

9.
Rhabdophane has been considered an important permeable reactive barrier to isolate groundwater radionuclides, and evaluating its precipitation response to different species of radionuclide in acid solutions is critical. In this work, the effects of pH values on the precipitation behavior of Nd3+ and Sm3+ into La-rhabdophane are systematically investigated. Some specific issues such as ions removal, precipitation reaction kinetics, and crystal growth affected ions incorporation are discussed in detail, along with uncovering the veil of the Ln (La, Nd, and Sm) leaching mechanism of associated La0.666Nd0.167Sm0.167PO4 monazite ceramic based on dissolution experiments and density functional theory. The results reveal that Nd3+ and Sm3+ can be removed more than 98% in pH = 1 solution within 12 h, whereas uneven precipitation process to form unexpected stoichiometric ratio of rhabdophane has been observed in 30–50 nm short crystal. Grain growth effects based on spark plasma sintering can contribute to homogenize the materials composition with obtaining La0.666Nd0.167Sm0.167PO4 monazite ceramics. Furthermore, the binding energy of Ln–O in (1 0 0) surface of monazite plays an important role in controlling the leaching stability of Ln3+, associated with the leaching activities are energetically favorable in the order of La > Nd > Sm for La0.666Nd0.167Sm0.167PO4 monazite.  相似文献   

10.
The adsorption–desorption behaviours of La3+, Sm3+, and Y3+ on 2-ethylhexylphosphonic acid mono-2-ethyl hexyl ester (HEHEHP) extraction resin were investigated in a chloride medium. The effects of reaction time, pH, hydrochloric acid concentration, flow rate, and adsorption mechanism were studied in detail using static and dynamic experimental methods. The results show that La3+ is the first to reach adsorption equilibrium, followed by Sm3+ and Y3+; the highest adsorption capacities of La3+, Sm3+, and Y3+ are obtained at solution pH of 4 and in the order of Y3+ > Sm3+ > La3+. La3+, Sm3+, and Y3+ can be eluted by 0.3, 0.5, and 3 mol/L hydrochloric acid, respectively, indicating that La3+ elutes most easily, and Y3+ is difficult. Moreover, the flow rate has little effect on the peak of rare earth desorption. The adsorption process is chemisorption; the slope method indicates that for each mol Sm3+ or Y3+ ion adsorbed, 3 mol H+ ions are simultaneously released, but two for La3+ under the given pH conditions. It is expected to provide theoretical and technical support for preparation of ultra-high purity rare earth by HEHEHP extraction resin.  相似文献   

11.
Macroreticular copolymer beads were prepared by suspension polymerization of 4-vinylbenzyl chloride (VBC), divinylbenzene (DVB) and monomers with carboxylic ester groups like dibutyl maleate (DBM), dibutyl fumarate (DBF) and dibutyl itaconate (DBI) in the presence of toluene as diluent. The copolymer beads were phosphorylated at the chloromethylated phenyl rings with triethyl phosphite and hydrolyzed by an aqueous sodium hydroxide solution; the hydrolysis on the bead surface converted carboxylic ester/phosphonate groups into carboxylic acid/phosphono groups, respectively. The investigations on the metal ion chelation characteristics of the H-form copolymer beads revealed that they have good adsorptivity toward heavy metal ions like Pb2+, Cd2+ and Cu2+, and poor adsorptivity toward ions like Hg2+ and UO22+. The adsorptivity caused by the three carboxylic ester monomer derivatives was in the order DBM > DBI > DBF. Especially, the Na-form copolymer beads neutralized by alkali treatment were very available for the adsorption of all the metal ions under investigation.  相似文献   

12.
A rhodamine-based probe bearing an N,N-dimethylaniline unit was developed as a fluorescent chemodosimeter for Ce4+ in aqueous media. Importantly, the sensor can selectively respond to Ce4+ over other commonly coexistent metal ions (such as La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Er3+, Tb3+, Ho3+, Tm3+, Yb3+, Lu3+, Y3+) in aqueous media with a rapid response time. The system, which utilizes an irreversible Ce4+-promoted oxidation reaction, responds instantaneously at room temperature with linear proportionality to the amount of Ce4+.  相似文献   

13.
《分离科学与技术》2012,47(19):2723-2731
Abstract

Separation factors of tracer amounts of Am from micro lanthanides (La, Ce, Pr, Nd, and Sm) by purified Cyanex 301 extraction in nitrate media have been determined: SFAm/La ~ 3500, SFAm/Ce,pr ~ 1000, SFAm/Nd ~ 1900, and SFAm/Sm~ 4500, with an average value >2300. The distribution ratio decreases with increasing lanthanide concentration in the aqueous phase. In the presence of a macro amount of Pr + Nd (0.1 ~ 0.6 M) the separation factors SFAm/Eu and SFAm/pr+Ndare about 4.7 × 103 and 2.1 × 103, respectively. The results of the countercurrent fractional process show that by using three extraction stages and two scrubbing stages, >99.99% Am can be separated from a tracer amount of Eu with <0.1% extraction of Eu. Using six extraction stages, >99.99% Am and <0.6% macro amount of Pr ± Nd are extracted into the organic phase.  相似文献   

14.
New ternary complexes of the types Ln(phen)L3 and Ln(bipy)L3 (phen=1,10-phenanthroline, bipy=2,2′-bipyridine; L=2-mercaptosalicylic acid; Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Ho3+, Yb3+) have been synthesized and characterized by elemental analysis, molar conductance, CD, XPS, IR, 1H NMR (DMF-d7) and electronic spectra.  相似文献   

15.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   

16.
Eu3+‐doped red‐emitting ceramics of Eu3+‐doped La3Mg2NbO9 were prepared via typical solid state. X‐ray diffraction and scanning electron microscope were utilized to characterize the ceramics. The photoluminescence excitation and emission spectra, the fluorescence decay curves, and color coordinates were investigated. The concentration quenching of the samples were discussed as well. The microstructures of the ceramics were discussed according to the spectral properties of probe ions of Eu3+, for example, substitution sites for Eu3+, inhomogeneous broadening and splitting of the emission bands, nonexponential decay, 5D07F0 emission transition, distorted symmetry sites, etc. The crystal structure of La3Mg2NbO9 is heavily distorted due to the mixed occupation of Mg and Nb on B sites. Eu3+ ions only substitute La3+ sites and Eu3+ ions (or rare‐earth ions) are arranged in the heavily disordered environments over the whole structure in La3Mg2NbO9.  相似文献   

17.
The aim of this study was to prepare magnetic beads that could be used for the removal of heavy‐metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [m‐poly(EGDMA–VTAZ)] beads were produced by suspension polymerization in the presence of a magnetite Fe3O4 nanopowder. The specific surface area of the m‐poly(EGDMA–VTAZ) beads was 74.8 m2/g with a diameter range of 150–200 μm, and the swelling ratio was 84%. The average Fe3O4 content of the resulting m‐poly(EGDMA–VTAZ) beads was 14.8%. The maximum binding capacities of the m‐poly(EGDMA–VTAZ) beads from aquous solution were 284.3 mg/g for Hg2+, 193.8 mg/g for Pb2+, 151.5 mg/g for Cu2+, 128.1 mg/g for Cd2+, and 99.4 mg/g for Zn2+. The affinity order on a mass basis was Hg2+ > Pb2+ > Cu2+ > Cd2+> Zn2+. The binding capacities from synthetic waste water were 178.1 mg/g for Hg2+, 132.4 mg/g for Pb2+, 83.5 mg/g for Cu2+, 54.1 mg/g for Cd2+, and 32.4 mg/g for Zn2+. The magnetic beads could be regenerated (up to ca. 97%) by a treatment with 0.1M HNO3. These features make m‐poly(EGDMA–VTAZ) beads potential supports for heavy‐metal removal under a magnetic field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Tb3+‐doped and Eu2+, Tb3+ co‐doped Ca9Y(PO4)7 phosphors were synthesized by conventional solid‐state method. Additionally, the luminescence properties, decay behavior and energy transfer mechanism have already been investigated in detail. The green emission intensity of Tb3+ ions under NUV excitation is weak due to its spin‐forbidden f‐f transition. While Eu2+ can efficiently absorb NUV light and yield broad blue emission, most of which can be absorbed by Tb3+ ions. Thus, the emission color can be easily tuned from cyan to green through the energy transfer of Eu2+→Tb3+ in Ca9Y(PO4)7:Eu2+,Tb3+ phosphor. In this work, the phenomenon of cross‐relaxation between 5D3 and 5D4 are also mentioned. The energy transfer is confirmed to be resulted from a quadrupole‐quadrupole mechanism.  相似文献   

19.
A hybrid molecular modelling technique, the ONIOM method, has been used to study the selectivity of various extractants for the extraction of La3+ and Nd3+. MM calculations have been done for the environmental system, whereas DFT calculation has been carried out for the model system. The total ONIOM energy of the metal‐ligand complexes was calculated and the selectivity of La3+ and Nd3+ for D2EPHA, Cyanex 272 as well as PC88A determined based on the interaction energy. The lower energy for Nd complexes compared to La complexes for all three extractants shows preference of Nd over La. The ONIOM calculations infer the stability of the metal complexes in the order of D2EPHA >PC88A >Cyanex 272, which agrees well with the experimental results for both metal ions.  相似文献   

20.
This contribution presents the synthesis and thermophysical characterization of seven lanthanide hafnates Ln2Hf2O7 (Ln=Sm3+, Eu3+, Gd3+, Dy3+, Y3+, Ho3+, Yb3+); the title samples were prepared at room temperature by mechanically milling stoichiometric mixtures of the corresponding elemental oxides. Irrespective of the lanthanide ion involved, milling promotes the formation of highly disordered fluoritelike materials. Postmilling thermal treatments facilitate the formation of the fluorite ordered derivative, the pyrochlore structure, but only for the larger lanthanides (Sm3+, Eu3+, Gd3+). Impedance spectroscopy measurements revealed that these materials show a moderate‐to‐good oxygen ion conductivity at high temperatures; furthermore, those adopting the pyrochlore structure give higher σdc and lower Edc than their fluorite analogues (σdc at 750°C>10?3 S·cm?1 vs <5·10?4 S·cm?1, respectively). The same trend also holds for the thermal resistivity at high temperatures; the highest thermal resistivity and thus, lowest κ was obtained for Eu2Hf2O7 (κ~1.3·W·m?1·K?1 at 800°C). Therefore, Ln2Hf2O7 phases might be attractive component materials for electrochemical devices and thermal insulating coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号