首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery were prepared from an environmentally‐sensitive graft copolymer, poly(N‐isopropyl acrylamide‐co‐methacryl acid)‐g‐poly(D ,L ‐lactide) (P(NIPAAm‐co‐MAAc)‐g‐PLA), a diblock copolymer, methoxy poly(ethylene glycol)‐b‐poly(D ,L ‐lactide) (mPEG‐PLA) and two functionalized diblock copolymers, galactosamine‐PEG‐PLA (Gal‐PEG‐PLA) and fluorescein isothiocyanate‐PEG‐PLA (FITC‐PEG‐PLA). Anticancer drug, free base doxorubicin (Dox) was incorporated into the inner core of multifunctional micelles by dialysis. From the drug release study, a change in pH (from pH 7.4 to 5.0) deformed the structure of the inner core from that of aggregated P(NIPAAm‐co‐MAAc), causing the release of a significant quantity of doxorubicin (Dox) from multifunctional micelles. Multifunctional micelles target specific tumors by an asialoglycoprotein (HepG2 cells)‐Gal (multifunctional micelle) receptor‐mediated tumor targeting mechanism. This mechanism then causes intracellular pH changes which induce Dox release from multifunctional micelles and that micelles have strong effects on the viability of HepG2 cells and are abolished by galactose. Confocal laser scanning microscopy (CLSM) reveals a clear distribution of multifunctional micelles. With careful design and sophisticated manipulation, polymeric micelles can be widely used in cancer diagnosis, cancer targeting, and cancer therapy simultaneously.  相似文献   

2.
Well‐defined copolymers of biocompatible poly(?‐caprolactone) (PCL) and poly(ethylene oxide) (PEO) are synthesized by two methods. Graft copolymers with a gradient structure are prepared by ring‐opening copolymerization of ?‐caprolactone (?CL) with a PEO macromonomer of the ?CL‐type. The ?CL polymerization is initiated by a PEO macroinitiator to prepare diblock copolymers. These amphiphilic copolymers are used as stabilizers for biodegradable poly(D,L ‐lactide) (PLA) nanoparticles prepared by a nanoprecipitation technique. The effect of the copolymer characteristic features (architecture, composition, and amount) on the nanoparticle formation and structure is investigated. The average size, size distribution, and stability of aqueous suspensions of the nanoparticles is measured by dynamic light scattering. For comparison, an amphiphilic random copolymer, poly(methyl methacrylate‐co‐methacrylic acid) (P(MMA‐co‐MA)), is synthesized. The stealthiness of the nanoparticles is analyzed in relation to the copolymer used as stabilizer. For this purpose, the activation of the complement system by nanoparticles is investigated in vitro using human serum. This activation is much less important whenever the nanoparticles are stabilized by a PEO‐containing copolymer rather than by the P(MMA‐co‐MA) amphiphile. The graft copolymers with a gradient structure and the diblock copolymers with similar macromolecular characteristics (molecular weight and hydrophilicity) are compared on the basis of their capacity to coat PLA nanoparticles and to make them stealthy.  相似文献   

3.
Core/shell nanoparticles that display a pH‐sensitive thermal response, self‐assembled from the amphiphilic tercopolymer, poly(N‐isopropylacrylamide‐co‐N,N‐dimethylacrylamide‐co‐10‐undecenoic acid) (P(NIPAAm‐co‐DMAAm‐co‐UA)), have recently been reported. In this study, folic acid is conjugated to the hydrophilic segment of the polymer through the free amine group (for targeting cancer cells that overexpress folate receptors) and cholesterol is grafted to the hydrophobic segment of the polymer. This polymer also self‐assembles into core/shell nanoparticles that exhibit pH‐induced temperature sensitivity, but they possess a more stable hydrophobic core than the original polymer P(NIPAAm‐co‐DMAAm‐co‐UA) and a shell containing folate molecules. An anticancer drug, doxorubicin (DOX), is encapsulated into the nanoparticles. DOX release is also pH‐dependent. DOX molecules delivered by P(NIPAAm‐co‐DMAAm‐co‐UA) and folate‐conjugated P(NIPAAm‐co‐DMAAm‐co‐UA)‐g‐cholesterol nanoparticles enter the nucleus more rapidly than those transported by P(NIPAAm‐co‐DMAAm)‐b‐poly(lactide‐co‐glycolide) nanoparticles, which are not pH sensitive. More importantly, these nanoparticles can recognize folate‐receptor‐expressing cancer cells. Compared to the nanoparticles without folate, the DOX‐loaded nanoparticles with folate yield a greater cellular uptake because of the folate‐receptor‐mediated endocytosis process, and, thus, higher cytotoxicity results. These multifunctional polymer core/shell nanoparticles may make a promising carrier to target drugs to cancer cells and release the drug molecules to the cytoplasm inside the cells.  相似文献   

4.
Clinical application of injectable, thermoresponsive hydrogels is hindered by lack of degradability and controlled drug release. To overcome these challenges, a family of thermoresponsive, ABC triblock polymer‐based hydrogels has been engineered to degrade and release drug cargo through either oxidative or hydrolytic/enzymatic mechanisms dictated by the “A” block composition. Three ABC triblock copolymers are synthesized with varying “A” blocks, including oxidation‐sensitive poly(propylene sulfide), slow hydrolytically/enzymatically degradable poly(ε‐caprolactone), and fast hydrolytically/enzymatically degradable poly(d ,l ‐lactide‐co‐glycolide), forming the respective formulations PPS135b‐PDMA152b‐PNIPAAM225 (PDN), PCL85b‐PDMA150b‐PNIPAAM150 (CDN), and PLGA60b‐PDMA148b‐PNIPAAM152 (LGDN). For all three polymers, hydrophilic poly(N,N‐dimethylacrylamide) and thermally responsive poly(N‐isopropylacrylamide) comprise the “B” and “C” blocks, respectively. These copolymers form micelles in aqueous solutions at ambient temperature that can be preloaded with small molecule drugs. These solutions quickly transition into hydrogels upon heating to 37 °C, forming a supra‐assembly of physically crosslinked, drug‐loaded micelles. PDN hydrogels are selectively degraded under oxidative conditions while CDN and LGDN hydrogels are inert to oxidation but show differential rates of hydrolytic/enzymatic decomposition. All three hydrogels are cytocompatible in vitro and in vivo, and drug‐loaded hydrogels demonstrate differential release kinetics in vivo corresponding with their specific degradation mechanism. These collective data highlight the potential cell and drug delivery use of this tunable class of ABC triblock polymer thermogels.  相似文献   

5.
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer‐to‐initiator feed ratio. PolyMPC and polyPEGMA‐grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA‐coated ferritin in organic solvents enables its processing with polystyrene‐block‐poly(ethylene oxide) copolymers, and selective integration into the PEO domains of microphase‐separated copolymer structures.  相似文献   

6.
Cinnamaldehyde, a major active compound of cinnamon, is known to induce apoptotic cell death in numerous human cancer cells. Here, dual acid‐responsive polymeric micelle‐forming cinnamaldehyde prodrugs, poly[(3‐phenylprop‐2‐ene‐1,1‐diyl)bis(oxy)bis(ethane‐2,1‐diyl)diacrylate]‐co‐4,4’(trimethylene dipiperidine)‐co‐poly(ethylene glycol), termed PCAE copolymers, are reported. PCAE is designed to incorporate cinnamaldehyde via acid‐cleavable acetal linkages in its pH‐sensitive hydrophobic backbone and self assemble to form stable micelles which can encapsulate camptothecin (CPT). PCAE self assembles to form micelles which release CPT and cinnamaldehyde in pH‐dependent manners. PCAE micelles induce apoptotic cell death through the generation of intracellular reactive oxygen species (ROS) and exert synergistic anticancer effects with a payload of CPT in vitro and in vivo model of SW620 human colon tumor‐bearing mice. It is anticipated that dual acid‐sensitive micelle‐forming PCAE with intrinsic anticancer activities has enormous potential as novel anticancer therapeutics.  相似文献   

7.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

8.
Hybrid organic/inorganic membranes that include a functionalized (‐SO3H), interconnected silica network, a non‐porogenic organic matrix, and a ‐SO3H‐functionalized terpolymer are synthesized through a sol–gel‐based strategy. The use of a novel crosslinkable poly(vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene sulfonyl fluoride)‐ter‐vinyltriethoxysilane) (poly(VDF‐ter‐PFSVE‐ter‐VTEOS)) terpolymer allows a multiple tuning of the different interfaces to produce original hybrid membranes with improved properties. The synthesized terpolymer and the composite membranes are characterized, and the proton conductivity of a hybrid membrane in the absence of the terpolymer is promising, since 8 mS cm?1 is reached at room temperature, immersed in water, with an experimental ion‐exchange‐capacity (IECexp) value of 0.4 meq g?1. Furthermore, when the composite membranes contain the interfaced terpolymer, they exhibit both a higher proton conductivity (43 mS cm?1 at 65 °C under 100% relative humidity) and better stability than the standard hybrid membrane, arising from the occurrence of a better interface between the inorganic silica and the poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (poly(VDF‐co‐HFP)) copolymer network. Accordingly, the hybrid SiO2‐SO3H/terpolymer/poly(VDF‐co‐HFP) copolymer membrane has potential use as an electrolyte in a polymer‐electrolyte‐membrane fuel cell operating at intermediate temperatures.  相似文献   

9.
This study involves the collective electron transport behavior of sequestered Au nanoparticles in a nanostructured polystyrene‐block‐poly(4‐vinylpyridine). The monolayer thin films (ca. 30 nm) consisting of Au nanoparticles self‐assembled in the 30‐nm spherical poly(4‐vinylpyridine) domains of an polystyrene‐block‐poly(4‐vinylpyridine) diblock copolymer were prepared. From the current‐voltage characteristics of these thin films, the collective electron transport behavior of Au nanoparticles sequestered in the spherical poly(4‐vinylpyridine) nanodomains was found to be dictated by Coulomb blockade and was quasi one‐dimensional, as opposed to the three‐dimensional behavior displayed by Au nanoparticles that had been dispersed randomly in homo‐poly(4‐vinylpyridine). The threshold voltage of these composite increased linearly upon increasing the inter‐nanoparticle distance. The electron tunneling rate constant in the case of Au nanoparticles confined in poly(4‐vinylpyridine) nanodomains is eight times larger than that in the randomly distributed case and it increases upon increasing the amount of Au nanoparticles. This phenomenon indicates that manipulating the spatial arrangement of metal nanoparticles by diblock copolymer can potentially create electronic devices with higher performance.  相似文献   

10.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

11.
Presented here is the novel use of thermoplastic siloxane copolymers as nanoimprint lithography (NIL) resists for 60 nm features. Two of the most critical steps of NIL are mold release and pattern transfer through dry etching. These require that the NIL resist have low surface energy and excellent dry‐etching resistance. Homopolymers traditionally used in NIL, such as polystyrene (PS) or poly(methyl methacrylate) (PMMA), generally cannot satisfy all these requirements as they exhibit polymer fracture and delamination during mold release and have poor etch resistance. A number of siloxane copolymers have been investigated for use as NIL resists, including poly(dimethylsiloxane)‐block‐polystyrene (PDMS‐b‐PS), poly(dimethylsiloxane)‐graft‐poly(methyl acrylate)‐co‐poly(isobornyl acrylate) (PDMS‐g‐PMA‐co‐PIA), and PDMS‐g‐PMMA. The presence of PDMS imparts the materials with many properties that are favorable for NIL, including low surface energy for easy mold release and high silicon content for chemical‐etch resistance—in particular, extremely low etch rates (comparable to PDMS) in oxygen plasma, to which organic polymers are quite susceptible. These properties give improved NIL results.  相似文献   

12.
The conformational transition from right‐handed B–DNA to left‐handed Z–DNA—the B–Z transition—has received increased attention recently because of its potential roles in biological systems and its applicability to bionanotechnology. Though the B–Z transition of poly(dG–dC) · poly(dG–dC) is inducible under high salt concentration conditions (over 4 M NaCl) or by addition of multivalent cations, such as hexaamminecobalt(III), no cationic polymer were known to induce the transition. In this study, it is shown by circular dichroism and UV spectroscopy that the cationic comb‐type copolymer, poly(L ‐lysine)‐graft‐dextran, but not poly(L ‐lysine) homopolymer or a basic peptide, induces the B–Z transition of poly(dG–dC) · poly(dG–dC). At a cationic amino group concentration of 10?4 M the copolymer stabilizes Z–DNA. The transition pathway from the B to the Z form is different to that observed previously. We speculate that the cationic backbone of the copolymer, which reduces electrostatic repulsion among DNA phosphate groups, and the hydrophilic dextran chains, which reduce activity of water, cooperate to induce the B–Z transition. The copolymer specifically modified the micro‐environment around DNA molecules to induce Z–DNA formation through stable and spontaneous inter‐polyelectrolyte complex formation.  相似文献   

13.
Delivering stem/progenitor cells via a degradable synthetic membrane to devitalized allogenic tissue graft surfaces presents a promising allograft‐mediated tissue regeneration strategy. However, balancing degradability and bioactivity of the synthetic membrane with physical characteristics demanded for successful clinical translation is challenging. Here, well‐integrated composites of hydroxyapatite (HA) and amphiphilic poly(lactide‐co‐glycolide)‐b‐poly(ethylene glycol)‐b‐poly(lactide‐co‐glycolide) (PELGA) with tunable degradation rates are designed that stiffen upon hydration and exhibit excellent shape recovery ability at body temperature for efficiently delivering skeletal progenitor cells around bone grafts. Unlike conventional degradable polymers that weaken upon wetting, these amphiphilic composites stiffen upon hydration as a result of enhanced polyethylene glycol (PEG) crystallization. HA‐PELGA composite membranes support the attachment, proliferation, and osteogenesis of rat periosteum‐derived cells in vitro, as well as the facile transfer of confluent cell sheets of green fluorescent protein‐labeled bone marrow stromal cells. With efficient shape memory behaviors around physiological temperature, the composite membranes can be programmed with a permanent tubular configuration, deformed into a flat temporary shape desired for cell seeding/cell sheet transfer, and triggered to wrap around a femoral bone allograft upon 37 °C saline rinse and subsequently stiffen. These properties combined make electrospun HA‐PELGA promising smart synthetic periosteal membranes for augmenting allograft healing.  相似文献   

14.
A series of new hydrophobic two‐photon absorbing (2PA) chromophores with varied electron‐donating groups in quasi‐linear and multibranched structures are synthesized to correlate their structure/photophysical property relationships. The feasibility of using these large two‐photon absorption cross‐sectional (δ, expressed in GM = 1 × 10–50 cm4 s photon–1 molecule–1) materials in aqueous solution is also explored. All four hydrophobic 2PA materials can be encapsulated into micelles generated by dispersing an amphiphilic block copolymer, poly(methacrylic acid)‐block‐polystyrene (PMAA‐b‐PS), into water. The micellar nanostructures are characterized using dynamic light scattering, atomic force microscopy, and transmission electron microscopy. After these dyes are incorporated into micelles, they exhibit strong fluorescence in water. It is found that the quantum yield and δ values of these chromophores are strongly dependent on the diameters of the micelles, concentrations of the PMAA‐b‐PS, and molecular structures of the 2PA chromophores. One of the compounds that has a strong triarylamino donor and a multibranched structure exhibits a large δ value of 2790 GM and high quantum yield (0.56) in micelle‐containing water. Although this value is smaller than the original value of 5300 GM in toluene, it is still substantially larger than the values of most water‐soluble 2PA materials, which have δ values of less than 100 GM.  相似文献   

15.
The crystallization of helical nanostructure resulting from the self‐assembly of a chiral diblock copolymer, poly(styrene)‐b‐poly(L ‐lactide) (PS‐PLLA), is studied. Various crystalline PS‐PLLA nanostructures are obtained by controlling the crystallization temperature of PLLA (Tc,PLLA), at which crystalline helices and crystalline cylinders occur while Tc,PLLA < Tg,PS (the glass transition temperature of PS) and Tc,PLLATg,PS, respectively. As evidenced by selected‐area electron diffraction and two‐dimensional X‐ray diffraction results, the PLLA crystallites under confinement reveal a unique anisotropic character regardless of the crystallization temperature. On the basis of observed uniaxial scattering results the PLLA crystallites grown within the microdomains are identified as crystals with preferential growth directions either along the [100] or along the [110]‐axes of the PLLA crystalline unit cell, at which the molecular chains and the growth direction are normal and parallel to the central axes of helices, respectively. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA < Tg,PS, owing to the directed crystallization by helical confinement, the preferential crystalline growth leads to the crystallization following a helical track with growth direction parallel to the central axes of helices through a twisting mechanism. Consequently, winding crystals with specific crystallographic orientation within the helical microdomains can be found. By contrast, while Tc,PLLATg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring‐like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation of helices, resulting in crystalline cylinders that might be applicable to the design of switchable large‐strain actuators.  相似文献   

16.
In the present work, a method is proposed to assemble pH‐responsive, flower‐like micelles that can expose a targeting unit at their periphery upon a decrease in pH. The micelles are composed of a novel biotinylated triblock copolymer of poly(εε‐caprolactone)‐block‐poly(ethylene oxide)‐block‐poly(2‐vinylpyridine) (PCL‐b‐PEO‐b‐P2VP) and the non‐biotinylated analogue. The block copolymers are synthesized by sequential anionic and ring‐opening polymerization. The pH‐dependent micellization behaviour in aqueous solution of the triblock copolymers developed is studied using dynamic light scattering, zeta potential, transmission electron microscopy (TEM), and fluorimetric measurements. The shielding of the biotin at neutral pH and their availability at the micelle surface upon protonation is established by TEM and surface plasmon resonance with avidin and streptavidin‐coated gold surfaces. The preliminary stealthy behavior of these pH‐responsive micelles is examined using the complement activation (CH50) test.  相似文献   

17.
Cilia are wavy hair‐like structures that extend outward from surfaces of various organisms. They are classified into two general categories, primary cilia, which exhibit sensing attributes, and motile cilia, which exert mechanical forces. A new poly(2‐(N,N‐dimethylamino)ethyl methacrylate‐co‐n‐butyl acrylate‐coN,N‐(dimethylamino) azobenzene acrylamide) (p(DMAEMA/nBA/DMAAZOAm) copolymer is prepared using colloidal synthesis, which, upon coalescence, form films capable of generating surfaces with cilia‐like features. While film morphological features allow the formation of wavy whiskers, the chemical composition of the copolymer facilitates chemical, thermal, and electromagnetic responses manifested by simultaneous shape and color changes as well as excitation wavelength dependent fluorescence. These studies demonstrate that synthetically produced polymeric films can exhibit combined thermal, chemical, and electromagnetic sensing leading to locomotive and color responses, which may find numerous applications in sensing devices, intelligent actuators, defensive mechanisms, and others.  相似文献   

18.
The controlled tuning of the characteristic dimensions of two‐dimensional arrays of block‐copolymer reverse micelles deposited on silicon surfaces is demonstrated. The polymer used is polystyrene‐block‐poly(2‐vinylpyridine) (91 500‐b‐105 000 g mol–1). Reverse micelles of this polymer with different aggregation numbers have been obtained from different solvents. The periodicity of the micellar array can be systematically varied by changing copolymer concentration, spin‐coating speeds, and by using solvent mixtures. The profound influence of humidity on the micellar film structure and the tuning of the film topography through control of humidity are presented. Light scattering, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy were used for characterization. As possible applications, replication of micellar array topography with polydimethylsiloxane and post‐loading of the micelles to form iron oxide nanoparticle arrays are presented.  相似文献   

19.
A simple route for fabricating highly ordered organic–inorganic hybrid nanostructures, using polystyrene‐block‐poly(ethylene oxide) diblock copolymer (PS‐b‐PEO) thin films coupled with sol–gel chemistry, is presented. Hexagonally packed arrays of titania nanodomains were generated by one‐step spin‐coating from solutions containing a titania precursor and PS‐b‐PEO, where the precursor was selectively incorporated into the PEO domain. The PS‐b‐PEO template was subsequently removed by UV treatment, leaving behind a highly dense array of hexagonally packed titania dots. The size of the dots, as well as the lattice spacing of the array, could be fine‐tuned by simply controlling the relative amount of sol–gel precursor to PS‐b‐PEO.  相似文献   

20.
Dielectric polymer film capacitors having high energy density, low loss and fast discharge speed are highly desirable for compact and reliable electrical power systems. In this work, we study the confined ferroelectric properties in a series of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐polystyrene [P(VDF‐CTFE)‐g‐PS] graft copolymers, and their potential application as high energy density and low loss capacitor films. Thin films (ca. 20 μm) are prepared by different processing methods, namely, hot‐pressing or solution‐casting followed by mechanical stretching at elevated temperatures. After crystallization‐induced microphase separation, PS side chains are segregated to the periphery of PVDF crystals, forming a confining interfacial layer. Due to the low polarizability of this confining PS‐rich layer at the amorphous–crystalline interface, the compensation polarization is substantially decreased resulting in a novel confined ferroelectric behavior in these graft copolymers. Both dielectric and ferroelectric losses are significantly reduced at the expense of a moderate decrease in discharged energy density. Our study indicates that the best performance is achieved for a P(VDF‐CTFE)‐g‐PS graft copolymer with 34 wt‐% PS; a relatively high discharged energy density of approximately 10 J cm?3 at 600 MV m?1, a low dielectric loss (tanδ = 0.006 at 1 kHz), and a low hysteresis loop loss (17.6%) at 550 MV m?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号