首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four series of dyes with dimethylamino electron donor groups and N‐R‐pyridinium (R = methyl Me, phenyl Ph, 2,4‐dinitrophenyl 2,4‐DNPh, or 2‐pyrimidyl 2‐Pym) electron acceptors are studied as their hexafluorophosphate salts. The intramolecular charge‐transfer (ICT) energies (Emax) of these compounds decrease within each of the series in the order R = Me > Ph > 2,4‐DNPh > 2‐Pym, as the electron‐accepting ability of the pyridinium ring increases. Hyper‐Rayleigh scattering with femtosecond 1300 or 800 nm lasers yields fluorescence‐free first hyperpolarizabilities β, and static first hyperpolarizabilities β0[H] are obtained via the two‐state model. Dipole moment changes Δμ12 for the ICT transitions obtained from Stark spectroscopy afford β0[S] values by using β0 = 3Δμ1212)2/2(Emax)212 = transition dipole moment). The β0[S] data show that the combination of pyridyl N‐arylation with conjugation extension affords large increases in β0. The β0[H] data generally agree with this conclusion, but resonance effects may explain some apparent anomalies. X‐ray structural studies on various salts reveal that the use of tosylate anions is not a generally applicable approach to engineering noncentrosymmetric structures of pyridinium salts. However, transN‐phenyl‐4‐(4‐dimethylaminophenyl‐4‐buta‐1,3‐dienyl)pyridinium hexafluorophosphate adopts the polar space group Cc, and shows a very large powder second harmonic generation efficiency from a 1907 nm laser, which is similar to that of the well‐studied material trans‐4′‐(dimethylamino)‐N‐methyl‐4‐stilbazolium tosylate (DAST).  相似文献   

2.
Second harmonic generation (SHG) based on a quadrupole effect in photonic‐crystal slabs (PCSs) consisting of centrosymmetric materials is presented. The results show that SHG occurs when the pump mode with an asymmetric electromagnetic field distribution is coupled with the eigenmode of the PCS. Theoretical and experimental studies also show that the phase match condition can be achieved without resorting to birefringence or a quasi‐phase‐match condition when two conditions coincide: the fundamental mode and the second harmonic mode are the eigenmodes of the PCS, and they can be excited simultaneously by tuning the dispersion curves so that they cross by changing the thickness of the waveguide layer. The concept of the asymmetry of the electromagnetic field spatial mode can be used in a microcavity to obtain harmonic generation.  相似文献   

3.
We study the photorefractive (PR) properties of a new kind of low glass‐transition temperature (Tg) polymer composite based on layered photoconductive polymers, poly(p‐phenylene terephthalate) carbazoles (PPT‐CZs). These photoconductors consist of the rigid backbone of PPT with pendant oxyalkyl CZ groups. The compounds are doped with the photosensitizer C60 and nonlinear optical chromophores diethylaminodicyanostyrene (DDCST), and no plasticizers are added. When the host polymers are mixed with various PR ingredients, the layers are preserved and their layer distance increases, indicating that all the guest molecules are confined to the nanoscale interlayer space. These composites showed very low Tg values (< ? °C). Despite the absence of a plasticizer and the lower concentration of the carbazole photoconductive moieties as compared to poly(N‐vinylcarbazole) systems, these materials show excellent PR properties, i.e., a PR gain of Γ = 250 cm–1 under an external electric field of 60 V μm–1, and diffraction efficiency and PR sensitivity of 93 % and 24 ± 7 cm2 kJ–1 at E = 100 V μm–1, respectively.  相似文献   

4.
Quantum dots (QDs, i.e., semiconductor nanocrystals) can be formed by spontaneous self‐assembly during epitaxial growth of lattice‐mismatched semiconductor systems. InAs QDs embedded in GaInAsP on InP are introduced, which can be continuously wavelength‐tuned over the 1.55 μm region by inserting ultrathin GaAs or GaP interlayers below them. We subsequently introduce a state‐filling optical nonlinearity, which only requires two electron–hole pairs per QD. We employ this nonlinearity for all‐optical switching using a Mach–Zehnder interferometric switch. We find a switching energy as low as 6 fJ.  相似文献   

5.
A fluorous metal–organic framework [Cu(FBTB)(DMF)] (FMOF‐3) [H2FBTB = 1,4‐bis(1‐H‐tetrazol‐5‐yl)tetrafluorobenzene] and fluorous nonporous coordination polymer [Ag2(FBTB)] (FN‐PCP‐1) are synthesized and characterized as for their structural, thermal, and textural properties. Together with the corresponding nonfluorinated analogues lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], and two known (super)hydrophobic MOFs, FMOF‐1 and ZIF‐8, they have been investigated as low‐dielectric constant (low‐κ) materials under dry and humid conditions. The results show that substitution of hydrogen with fluorine or fluoroalkyl groups on the organic linker imparts higher hydrophobicity and lower polarizability to the overall material. Pellets of FMOF‐1, FMOF‐3, and FN‐PCP‐1 exhibit κ values of 1.63(1), 2.44(3), and 2.57(3) at 2 × 106 Hz, respectively, under ambient conditions, versus 2.94(8) and 3.79(1) for lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], respectively. Such low‐κ values persist even upon exposure to almost saturated humidity levels. Correcting for the experimental pellet density, the intrinsic κ for FMOF‐1 reaches the remarkably low value of 1.28, the lowest value known to date for a hydrophobic material.  相似文献   

6.
High second‐order susceptibilities are created by thermal poling in bulk germanium disulfide based chalcogenide glasses. Experimental conditions of the poling treatment (temperature, voltage, time) were optimized for each glass composition. The second‐order nonlinear signals were recorded by using the Maker fringes experiment and a second‐order coefficient χ(2) up to 8 pm V–1 was measured in the Ge25Sb10S65 glass. This value is obtained using a simulation based on accurate knowledge of the thickness of the nonlinear layer. Two mechanisms are proposed to explain the creation of a nonlinear layer under the anode: the formation and the migration of charged defects towards the anode may mainly occur in Ge20Ga5Sb10S65 and Ge25Ga5S70 glasses, whereas the migration of Na+ ions towards the cathode may be responsible for the accumulation of negative charges under the anode in Ge33S67 and Ge25Sb10S65 glasses. Different electronic conductivity behaviors seem to be at the origin of the phenomenon. In parallel, the potential effect of the poling treatment on the structural and electronic properties is studied using Raman spectroscopy and secondary ion mass spectroscopy measurements.  相似文献   

7.
Redox‐active organic molecules are intriguing candidates as active electrode materials for next‐generation rechargeable batteries due to their structural diversity, environmental friendliness, and solution‐phase preparation processes. Recently, a transition metal–organic coordination approach is exploited to construct high capacity anodes for lithium‐ion rechargeable batteries. Here, a family of transition metal–organic coordination complexes with terephthalate ligands is synthesized that exhibit reversible capacities above 1100 mA h g?1. The reaction mechanism to describe the multi‐electron redox processes is investigated at the molecular‐level via the synchrotron‐sourced X‐ray absorption spectroscopy and solid‐state NMR analyses. The spectroscopic studies reveal that the electrochemical process involves oxidation state changes of the transition metals followed by additional lithium insertion/extraction in the conjugated aromatic ligands. The combined approaches assisted by synthetic organic chemistry and solid‐state analysis provide mechanistic insights into excessive lithiation processes that have implications for the design of high‐performance anode materials.  相似文献   

8.
A series of ionic stilbazolium salts with benzenesulfonates with different substituents in the para position have been synthesized. Single crystals of 4‐N,N‐dimethylamino‐4′‐N′‐methylstilbazolium p‐methoxybenzenesulfonate (DSMOS) were successfully grown in methanol solution by slow cooling. X‐ray studies revealed that DSMOS crystallized in the triclinic space group P1 with its molecular dipoles perfectly aligned in one direction—favorable for large nonlinear optical and electro‐optical effects. Kurtz powder tests revealed a large powder second‐harmonic generation efficiency that is similar to that of the well‐studied 4‐N,N‐dimethylamino‐4′‐N′‐methylstilbazolium tosylate (DAST).  相似文献   

9.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

10.
Shape‐memory polymers (SMPs) are self‐adjusting, smart materials in which shape changes can be accurately controlled at specific, tailored temperatures. In this study, the glass transition temperature (Tg) is adjusted between 28 and 55 °C through synthesis of copolymers of methyl acrylate (MA), methyl methacrylate (MMA), and isobornyl acrylate (IBoA). Acrylate compositions with both crosslinker densities and photoinitiator concentrations optimized at fractions of a mole percent demonstrate fully recoverable strains at 807% for a Tg of 28 °C, at 663% for a Tg of 37 °C, and at 553% for a Tg of 55 °C. A new compound, 4,4′‐di(acryloyloxy)benzil (referred to hereafter as Xini) in which both polymerizable and initiating functionalities are incorporated in the same molecule, was synthesized and polymerized into acrylate shape‐memory polymers, which were thermomechanically characterized yielding fully recoverable strains above 500%. The materials synthesized in this work were compared to an industry standard thermoplastic SMP, Mitsubishi's MM5510, which showed failure strains of similar magnitude, but without full shape recovery: residual strain after a single shape‐memory cycle caused large‐scale disfiguration. The materials in this study are intended to enable future applications where both recoverable high‐strain capacity and the ability to accurately and independently position Tg are required.  相似文献   

11.
A self‐healing approach for optically transparent thermoplastic polymers, based on plasticizer‐induced solvent welding, is reported. For the specific system investigated, dibutylphthalate (DBP) filled urea‐formaldehyde capsules are dispersed in a polymethylmethacrylate (PMMA) matrix. Upon a damage event, DBP is released into the crack, and locally plasticizes and swells the polymer, enabling it to remend. Two challenges are addressed to maintain optical transparency: minimization of light scatter from the capsules in the polymer matrix and minimization of light scatter from the healed polymer. PMMA films containing DBP capsules have good transmissive properties as a result of the close index match between PMMA and DBP. The transmission properties are better than, for example, when DBP capsules are dispersed into a poorly index matched matrix, such as polystyrene. In the DBP PMMA system, the healed material is inherently index matched to the polymer matrix and thus the polymer's original optical properties are largely restored. Self‐healing using both small capsules, 1.5 μm in diameter, and large capsules, 75 μm in diameter is demonstrated. Smaller capsules are particularly important for thin polymer films which are not thick enough to hold the larger capsules. Polymer films with smaller capsules also have very good transmission properties due to a minimization of light scattering by the small size of the capsules. Large capsules enable healing of larger damage events, but do inherently result in some light scattering. This plasticizer‐based approach to self‐healing is shown to enable recovery of the protective properties and a portion of the mechanical properties of a polymeric film.  相似文献   

12.
The photoresponse of ferroelectric smectic side‐chain liquid‐crystalline (LC) polymers containing a photoisomerizable azobenzene derivative as a covalently linked photochromic side group is investigated. By static measurements in different photostationary states, the effect of trans–cis isomerization on the material's phase‐transition temperatures and its ferroelectric properties (spontaneous electric polarization PS and director tilt angle θ) are analyzed. It turns out that the Curie temperature (transition SC* to SA) can be reversibly shifted by up to 17 °C. The molecular mechanism of this “photoferroelectric effect” is studied in detail using time‐resolved measurements of the dye's optical absorbance, the director tilt angle, and the spontaneous polarization, which show a direct response of the ferroelectric parameters to the molecular isomerization. The kinetics of the thermal reisomerization of the azo dye in the LC matrix are evaluated. A comparison to the reisomerization reaction in isotropic solution (toluene) reveals a faster thermal relaxation of the dye in the LC phase.  相似文献   

13.
A new class of materials that are capable of color tunability over 300 nm with a 15 °C temperature change is introduced. The materials are assembled from thermoresponsive poly (N‐isopropylacrylamide)‐co‐acrylic acid (pNIPAm‐co‐AAc) microgels, which are deposited on Au coated glass substrates. The films are also pH responsive; the temperature‐induced color change was suppressed at high pH and is consistent with the behavior of a solution of suspended microgels. The mechanism proposed to account for the observed optical properties suggests that they result from the two Au layers being separated from each other by the “monolithic” microgel film, much like a Fabry‐Pérot etalon or interferometer. It is the modulation of the distance between these two layers, facilitated by the microgel collapse transition at high temperature, that allows the color to be tuned. The sensitivity of the system presented here will be used for future sensing and biosensing applications, as well as for light filtering applications.  相似文献   

14.
15.
New classes of liquid‐crystalline semiconductor polymers based on perylene diester benzimidazole and perylene diester imide mesogens are reported. Two highly soluble side‐chain polymers, poly(perylene diester benzimidazole acrylate) (PPDB) and poly(perylene diester imide acrylate) (PPDI) are synthesized by nitroxide‐mediated radical polymerization (NMRP). PPDB shows n‐type semiconductor performance with electron mobilities of 3.2 × 10?4 cm2 V?1 s?1 obtained in a diode configuration by fitting the space‐charge‐limited currents (SCLC) according to the Mott–Gurney equation. Interestingly, PPDI performs preferentially as a p‐type material with a hole mobility of 1.5 × 10?4 cm2 V?1 s?1, which is attributed to the less electron‐deficient perylene core of PPDI compared to PPDB. Optical properties are investigated by UV‐vis and fluorescence spectroscopy. The extended π‐conjugation system due to the benzimidazole unit of PPDB leads to a considerably broader absorption in the visible region compared to PPDI. HOMO and LUMO levels of the polymers are also determined by cyclic voltammetry; the resulting energy band‐gaps are 1.86 eV for PPDB and 2.16 eV for PPDI. Thermal behavior and liquid crystallinity are studied by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction measurements. The results indicate liquid‐crystalline order of the polymers over a broad temperature range. These thermal, electrical, and optical properties make the perylene side‐chain polymers attractive materials for organic photovoltaics.  相似文献   

16.
A novel all‐inorganic electroluminescent device is demonstrated based on highly luminescent CdTe nanocrystals intercalated within a laminar hydrotalcite‐like structure. The laminar scaffold acts to both support and distribute the CdTe nanocrystals. The device is synthesized using simple wet chemical processes at room temperature in ambient conditions. It has high thermal stability, operating continuously up to 90 °C, and a maximum efficiency at J = 0.12 A cm?2. The device is targeted at the automotive industry.  相似文献   

17.
We present new stilbazolium salt DSTMS (4‐N,N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium 2,4,6‐trimethylbenzenesulfonate) with both high second‐order nonlinear optical properties and very favorable crystal growth characteristics. We are able to obtain very large area bulk single crystals of more than 3 × 3 × 0.2 cm3 with a high optical quality without using seed crystals by using low‐temperature solution growth. We also demonstrate the growth of single crystalline thin films of DSTMS with an area of up to 6 × 5 mm2 and a thickness between 5–30 μm. Nonlinear optical measurements reveal that DSTMS possesses large nonlinear optical susceptibilities with χ111(2) = (430 ± 40) pm V–1 at 1.9 μm. Highly efficient generation of broadband THz waves with THz electric field strengths of more than 4 kV cm–1 using 160 fs laser pump pulses at a wavelength λ = 1.45 μm and DSTMS crystals has been demonstrated.  相似文献   

18.
Here, tuning of the optical properties of emission centers by tailoring the ligand fields is investigated. Experimentally, it is demonstrated that Ni2+ can act as a single emission species in multiple octahedral local environments. Nanocrystal‐embedded hybrid materials are employed as hosts in order to take advantage of their convenience in local environment design for practical applications. Novel composite gain materials with high transparence are successfully made, and show interesting wavelength‐tunable and ultra‐broadband infrared luminescence covering the whole near‐infrared region from 1 100 to 1 800 nm. The infrared luminescence peak positions can be finely tuned from 1 300 to 1 450 and to 1 570 nm, with the largest full width at half maximum being about 400 nm and covering the telecommunication bands at 1 200–1 500 nm. According to the results of characterization, the unusual luminescence, interestingly, originates from Ni2+ in nanocrystals and the doping efficiency of Ni2+ is surprisingly high. The results demonstrate that the method presented may be an effective way to fabricate multifunctional light sources with various fundamental multifunctional applications from efficient broadband optical amplifiers to bio‐imaging.  相似文献   

19.
20.
One of the most challenging tasks encountered in developing highly efficient electro‐optic (EO) devices is to find a material system that possesses all desirable properties such as large EO coefficients, good thermal and mechanical stability, and low optical loss. In order to meet this stringent requirement, we have developed a series of crosslinkable EO dendrimers using the standardized AJL8 ‐type chromophore as the center core and the furyl‐ and anthryl‐containing dendrons as the periphery. Upon adding a trismaleimide ( TMI ) dienophile, these dendrimers could be in‐situ crosslinked via the Diels–Alder cycloaddition and efficiently poled under a high electric field. Through this dynamic process, the spatially voided and π‐electron‐rich surrounding of the chromophore core changes into a dense and more aliphatic network, with the dipolar chromophore embedded and aligned inside. The resultant materials exhibit large EO coefficients (63–99 pm V–1 at 1.31 μm), excellent temporal stability (the original r33 values remain unchanged at 100 °C for more than 500 h), and blue‐shifted near‐IR absorption. With these combined desirable properties, a poled EOD2/TMI film could be processed through multiple lithographic and etching steps to fabricate a racetrack‐shaped micro‐ring resonator. By coupling this ring resonator with a side‐polished optical fiber, a novel broadband electric‐field sensor with high sensitivity of 100 mV m–1 at 550 MHz was successfully demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号