首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A color management system (CMS) such as ICC profile or sRGB space have been proposed for color transformation and reproduction of cross media. In such a CMS, accurate colorimetric characterization of a display device plays a critical role in achieving device‐independent color reproduction. In the case of a CRT, colorimetric characterization based on a GOG model is accurate enough for this purpose. However, there is no effective counterpart in liquid‐crystal displays (LCDs) since the characterization of an LCD has many difficulties, such as channel interaction and non‐constancy of channel chromaticity. In this paper, a new method of display characterization is proposed which is applicable to the assessment of color reproduction of LCDs. The proposed method characterizes an electro‐optical transfer function considering both channel interaction and non‐constancy of channel chromaticity. Experimental results show that the proposed method is very effective in the colorimetry of LCDs.  相似文献   

2.
Abstract— A simple additivity model is often used as a basic model for digital‐display characterization. However, such a simple model cannot satisfy the needs of demanding color‐management applications all the time. On the other hand, systematic sampling of the color space and 3‐D interpolation is an expensive method in terms of measurement and computation time when precision is needed. This paper presents an enhanced method to characterize the XYZ‐to‐RGB transform of a digital display. This parametric method exploits the independence between the luminance variation of the electro‐optic response and the colorimetric responses for certain display types. The model is generally applicable to digital displays, including 3‐DMD projectors, single DMDs, CRTs, LCDs, etc., if the independence condition is satisfied. While the problem to solve is a 3‐D‐to‐3‐D transformation (from XYZ to RGB), the proposed parametric model is the composition of a 2‐D transform followed by a 1‐D transform. The 2‐D transform manages the chromatic aspects and, in succession, the 1‐D transform manages the luminance variations. This parametric digital model is applicable in the field of color management, with the objective of characterizing digital displays and applying a reference look such as a film look.  相似文献   

3.
In this paper we present a new practical camera characterization technique to improve color accuracy in high dynamic range (HDR) imaging. Camera characterization refers to the process of mapping device‐dependent signals, such as digital camera RAW images, into a well‐defined color space. This is a well‐understood process for low dynamic range (LDR) imaging and is part of most digital cameras — usually mapping from the raw camera signal to the sRGB or Adobe RGB color space. This paper presents an efficient and accurate characterization method for high dynamic range imaging that extends previous methods originally designed for LDR imaging. We demonstrate that our characterization method is very accurate even in unknown illumination conditions, effectively turning a digital camera into a measurement device that measures physically accurate radiance values — both in terms of luminance and color — rivaling more expensive measurement instruments.  相似文献   

4.
Abstract— Successful color‐management of projection systems depends on knowledge of their characteristics. In this study, two typical portable projectors were characterized. The projectors are based on different technologies, liquid‐crystal display (LCD) and digital light‐processing (DLP). Measurements were made with a spectroradiometer. The properties measured were spectral characteristics and the intensity of the primary and white colors, basic colorimetric characteristics, inter‐channel dependency, tone characteristics, color‐tracking characteristics, spatial non‐uniformity, dependency on background, and temporal stability. Based on the characterization results, the possibility of color‐management of the tested projectors is discussed.  相似文献   

5.
A real-world scene captured via digital devices, such as a digital still camera, video recorder and mobile device, is a common behavior in recent decades. With the increasing availability, reproduction and sharing of media, the intellectual property of digital media is incapable of guaranty. To claim the ownership of digital camera media, the imperceptible visible watermarking (IVW) mechanism was designed based on the observation that most camera devices contain the postcamera histogram operation. The IVW approach can achieve advantages both the content readability of invisible watermarking methodology and the visual ownership identification of visible watermarking methodology. The computational complexity of IVW is low and can be effectively applied to almost any of the digital electronic devices when capturing the real-world scene without additional instruments. The following results and analysis demonstrate the novel scheme is effective and applicable for versatile images and videos captured.  相似文献   

6.
Abstract— Color breakup is an artifact perceivable on field‐sequential‐color (FSC) displays, both in stationary and in moving images. In this work, a unique device and a method for measuring color breakup on stationary images is proposed. Rotating the field of view of a high‐speed measurement camera in milliseconds simulates saccadic behavior. The target can be a virtual display, a direct‐view display or a projector image. Captured images can be used for quantifying the color breakup of a target display. The results along with an exploration of their application to breakup characterization will be presented.  相似文献   

7.
Abstract— A full‐color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about one‐half the power of analogous RGB displays. RGBW and RGB 2.16‐in.‐diagonal displays with average power consumptions of 180 and 340 mW, respectively, were characterized for a set of standard digital still camera images at a luminance of 100 cd/m2. In both cases, a white‐emitting AMOLED was used as the light source, and standard LCD filters were used to provide the R, G, and B emission. The color gamuts of these displays were identical and the higher overall efficiency of the RGBW format results from two factors. First, a large fraction of a typical image is near neutral in color and can be reproduced using the white sub‐pixel. Second, the white sub‐pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. The efficiency of these displays can be further enhanced by choosing a white emitter optimized to the target display white point (in this case D65). A two‐emission layer configuration based upon separate yellow and blue‐emitting regions is shown to be well suited for both the RGBW and RGB formats.  相似文献   

8.
Full‐color e‐paper displays that have a small color gamut encounter image tone distortions and contour artifacts in high‐saturation regions. To solve these issues, in this paper, we comprehensively measure the colorimetric responses of input image signals and demonstrate that the perceptual colorfulness in terms of chroma abnormally declines when the input saturation is beyond a certain value. Accordingly, saturation‐based tone‐mapping curves are developed to map the abnormal high saturation to the range that the display is able to normally render. By testing several test charts and natural images, the recoveries of the original image tones and the removals of the contour artifacts are experimentally verified. More important, by discussing how to conduct a database of tone‐mapping curves for different ambient lights and utilize the database for an unknown ambient light, the proposed method is proven to be completely ambient light adaptive.  相似文献   

9.
Abstract— The blue‐light‐emission properties of organic light‐emitting‐diode (OLED) displays must be enhanced to meet the requirements for color purity and luminous efficiency because few blue‐light‐emitting materials meet these requirements. This is particularly true for polymeric and phosphorescent light‐emitting materials. To attain the required purity and efficiency, a polarized‐light‐recycling structure for blue light that is called a blue enhanced circular polarizer (BECP) has been developed. The principle of the structure and the fabricated prototype device is described and it is shown that the structure increases blue‐light intensity and color purity, improves efficiency, provides a wide color gamut, and limits ambient‐light reflection.  相似文献   

10.
Abstract— Liquid‐crystal displays (LCDs) have notable variation in luminance and perceived contrast as a function of the angle from which they are viewed. Though this is an important performance issue for LCDs, most evaluation techniques for assessing this variation have been limited to laboratory settings. This study demonstrates the use of a photographic technique for such an evaluation. The technique is based on an actively cooled charge‐coupled‐device (CCD) detector in combination with a macro lens covering a circular angular range (θ) of ±42.5°. The camera was used to evaluate the luminance and perceived contrast properties of an LCD. Uniform field images corresponding to 17 equally spaced gray‐scale values in the digital driving level (DDL) range of the display system were acquired. The 12‐bit gray‐scale digital images produced by the camera were converted to luminance units (cd/m2) via the measured luminance vs. DDL response function of the camera. The changes in perceived contrast as a function of viewing angle were derived from the Barten model of the gray‐scale response of the human‐visual system using the methods proposed by the AAPM TG18 Report. The results of this photographic technique were compared to measurements acquired from a similar display using a Fourier‐optics‐based luminance meter. The results of the two methods generally agreed to within 5%. The photographic methods used were found to be accurate and robust for in‐field assessment of the angular response of LCDs over the FOV of the camera.  相似文献   

11.
Auditory interfaces can overcome visual interfaces when a primary task, such as driving, competes for the attention of a user controlling a device, such as radio. In emerging interfaces enabled by camera tracking, auditory displays may also provide viable alternatives to visual displays. This paper presents a user study of interoperable auditory and visual menus, in which control gestures remain the same in the visual and the auditory domain. Tested control methods included a novel free-hand gesture interaction with camera-based tracking, and touch screen interaction with a tablet. The task of the participants was to select numbers from a visual or an auditory menu including a circular layout and a numeric keypad layout. Results show, that even with participant's full attention to the task, the performance and accuracy of the auditory interface are the same or even slightly better than the visual when controlled with free-hand gestures. The auditory menu was measured to be slower in touch screen interaction, but questionnaire revealed that over half of the participants felt that the circular auditory menu was faster than the visual menu. Furthermore, visual and auditory feedback in touch screen interaction with numeric layout was measured fastest, touch screen with circular menu second fastest, and the free-hand gesture interface was slowest. The results suggest that auditory menus can potentially provide a fast and desirable interface to control devices with free-hand gestures.  相似文献   

12.
Abstract— Two newly derived characterization models for a liquid‐crystal (LC) display have been tested for five LC‐based displays. Data measured from a series of test colors indicated that all LC‐based displays showed similar characteristics, including an S‐shaped tone curve and poor channel chromaticity constancy. Because they include a hyperbolic function in their definition, the models do not have analytical inverses, and so iterative mathematical techniques are applied. It was shown that a new characterization model based on a hyperbolic function fits the tone curve very accurately with only four coefficients per channel for any type of LCD. In addition, it was also shown that the first derivative of the function provides a means of accurate correction of the chromaticity variation.  相似文献   

13.
The main task of digital image processing is to recognize properties of real objects based on their digital images. These images are obtained by some sampling device, like a CCD camera, and represented as finite sets of points that are assigned some value in a gray-level or color scale. Based on technical properties of sampling devices, these points are usually assumed to form a square grid and are modeled as finite subsets of Z2. Therefore, a fundamental question in digital image processing is which features in the digital image correspond, under certain conditions, to properties of the underlying objects. In practical applications this question is mostly answered by visually judging the obtained digital images. In this paper we present a comprehensive answer to this question with respect to topological properties. In particular, we derive conditions relating properties of real objects to the grid size of the sampling device which guarantee that a real object and its digital image are topologically equivalent. These conditions also imply that two digital images of a given object are topologically equivalent. This means, for example, that shifting or rotating an object or the camera cannot lead to topologically different images, i.e., topological properties of obtained digital images are invariant under shifting and rotation.  相似文献   

14.
Abstract— The correct estimation of the gamma exponent describing the tone‐reproduction curve of a display is an important step in color management. Several methods for visual gamma estimation have been proposed. In this study, the theoretical merits and practical problems of a number of these methods are discussed and compared, and improvements are suggested. A new method to compare gamma models with different numbers of parameters is introduced. In an experiment, spatial and temporal brightness‐matching methods were tested with 32 untrained subjects working on a CRT and an LCD with different resolutions under office and low‐illumination conditions. Illumination had no effect on gamma estimations. Subjects had great difficulties with spatial brightness matching at low resolutions. Temporal and spatial visual brightness matching for untrained subjects showed a larger gamma than photometric fits.  相似文献   

15.
16.
17.
Abstract— Many assume LCDs will quickly dominate the TV market by simply scaling existing LCD‐monitor panels to wider formats (e.g.,16:9 HDTV) and larger sizes. However, a number of TV requirements push beyond the state‐of‐the‐art monitors of today; response time, brightness, contrast, color envelope, color temperature, and progressive scan‐and‐hold issues require a re‐engineering of the monitor solution. Building upon the strengths of LVDS and RSDS technology solutions in digital video‐data communications, we have created a completely new architecture that fully addresses the needs of TV while supporting existing LCD‐monitor and notebook panels. The Point‐to‐Point Differential Signaling (PPDS?) architecture is more than a data link between the timing controller and the column driver. It is an architecture that supports very large displays with features like multiple windows each with its own gamma, various gamma optimizations, color balance at every gray level, minimal bezel size, a color path greater than 30 bits to the display surface, four‐color mosaics, and numerous other benefits.  相似文献   

18.
Abstract— A new method for achieving full‐color capability for inorganic EL displays was developed, which combines electroluminescence with photoluminescence phenomena in the same device structure. In this display panel, the blue emission was obtained from the EL device by using the Eu‐doped barium thioaluminate phosphor material system, which was then used to generate green and red emission by the use of down‐conversion materials. The major advantages of the Color‐by‐Blue method (CBB) are the elimination of color‐balance control issues associated with the use of different electroluminescent phosphor materials for red, green, and blue with potentially different threshold voltages for the onset of luminance and the achievement of a low‐cost high‐yield manufacturing process.  相似文献   

19.
Abstract— By introducing polyhedral oligomeric silsesquioxane (POSS) nanoparticles along with a controlled amount of UV‐curable reactive mesogen (RM) into a liquid‐crystalline (LC) medium, a multi‐domain vertical‐alignment LC device was successfully demonstrated. The device, possessing a vertically aligned LC director in four different azimuthal directions, exhibited a fast response time and wide‐viewing‐angle characteristics, in the absence of conventional polymer‐type vertical‐alignment layers. Electro‐optic characteristics of the fabricated device, before and after UV curing of the cell, were studied. The surface morphology of the substrate surfaces were analyzed by using field‐emission scanning electron microscopy (FESEM). The experimental results show that the technology will possibly be applicable to cost‐effective vertical‐alignment liquid‐crystal devices and is suitable for green‐technology liquid‐crystal displays.  相似文献   

20.
Nonintrusive Component Forensics of Visual Sensors Using Output Images   总被引:1,自引:0,他引:1  
Rapid technology development and the widespread use of visual sensors have led to a number of new problems related to protecting intellectual property rights, handling patent infringements, authenticating acquisition sources, and identifying content manipulations. This paper introduces nonintrusive component forensics as a new methodology for the forensic analysis of visual sensing information, aiming to identify the algorithms and parameters employed inside various processing modules of a digital device by only using the device output data without breaking the device apart. We propose techniques to estimate the algorithms and parameters employed by important camera components, such as color filter array and color interpolation modules. The estimated interpolation coefficients provide useful features to construct an efficient camera identifier to determine the brand and model from which an image was captured. The results obtained from such component analysis are also useful to examine the similarities between the technologies employed by different camera models to identify potential infringement/licensing and to facilitate studies on technology evolution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号