共查询到20条相似文献,搜索用时 0 毫秒
1.
Photonic crystals with a complete bandgap can stop the propagation of light of a certain frequency in all directions. We introduce double‐inverse‐opal photonic crystals (DIOPCs) as a new kind of optical switch. In the DIOPC, a movable, weakly scattering sphere is embedded within each pore of the inverse‐opal photonic crystal lattice. Switching between a diffusive reflector and a photonic crystal environment is experimentally demonstrated. Theory shows that a complete bandgap can be realized that can be opened or closed by moving the spheres. This functionality opens up new possibilities for the control of light emission and propagation. The close link and interaction between the chemical synthesis and the computational design and analysis underlines the interdisciplinary focus of this report. 相似文献
2.
Photo‐tunable photonic crystals were prepared from three dimensional (3D) colloidal crystal templates using a photoresponsive azopolymer. For the preparation of azopolymer infiltrated photonic crystals, silica colloidal crystals were fabricated by gravity sedimentation, a self‐assembly technique. The interstitial voids between colloidal particles were filled with azopolymer and azopolymer inverse opals were produced by treatment with aqueous hydrofluoric acid. These photonic crystals exhibited stop bands in their transmission spectra measured in the normal incidence to the (111) plane of face centered cubic (fcc). The photonic bandgap of the azopolymer infiltrated opal and inverse opal could be controlled by the refractive index change due to the photoinduced orientation of azobenzene chromophores. When the azopolymer photonic crystals were irradiated with linearly polarized light, their bandgap positions were shifted to shorter wavelength regions with increasing irradiation time. This behavior experimentally produced a photoinduced orientation of the azobenzene groups in parallel with the incidence of the excitation light. Through such an out‐of‐plane orientation of azo chromophores, parallel to the [111] fcc crystallographic axis, the effective refractive index of the photonic crystal medium was decreased. Therefore, a blue‐shift in bandgap positions was consequently induced with 20–40 nm tuning ranges. The out‐of‐plane orientation was confirmed by angular resolved absorption spectral measurements. 相似文献
3.
Artificial defect engineering in 3D colloidal photonic crystals is of paramount importance in terms of device applications. Over the past few years, we have carried out a great deal of research on introducing artificial defects, including point, line, and planar defects, in 3D colloidal photonic crystals by using “bottom‐up” self‐assembly in combination with “top‐down” micromachining techniques. In this Feature Article, we summarize our research results regarding the engineering of artificial defects in self‐assembled 3D photonic crystals, along with other important research breakthroughs in the literature. The significant advancements in the engineering of defects as reviewed here together with the encouraging reports on the fabrication of perfect colloidal crystals without unwanted defects will collectively lead to technological applications of self‐assembled 3D photonic crystals in the near future. 相似文献
4.
M.N. Shkunov Z.V. Vardeny M.C. DeLong R.C. Polson A.A. Zakhidov R.H. Baughman 《Advanced functional materials》2002,12(1):21-26
A photonic crystal laser that is tunable throughout the visible in three‐dimensionally switchable directions is demonstrated. This photo‐pumped laser utilizes a dye‐infiltrated, single‐crystal SiO2 opal having incomplete bandgaps. Our results support a gap‐state‐enhanced distributed feedback mechanism for lasing. Three different types of wavelength tunability are demonstrated, each applicable over a different frequency range and involving either single or multiple bandgaps. The many independent laser cavities that exist in one photonic crystal are demonstrated by simultaneously obtaining lasing in various colors and directions from an opal crystal. The observation of characteristic laser emission lines provides a new spectroscopy for characterizing intra‐gap photonic states, which may be useful for developing the photonic crystal analogues of electronic circuitry. 相似文献
5.
M. Hermatschweiler A. Ledermann G. A. Ozin M. Wegener G. von Freymann 《Advanced functional materials》2007,17(14):2273-2277
Silicon inverse woodpile photonic crystals are fabricated for the first time. Our approach, which is based on direct laser writing of polymeric templates and a novel silicon single‐inversion procedure, leads to high‐quality structures with gap/midgap ratios of 14.2 %, centered at a wavelength of 2.5 μm. It is shown that gap/midgap ratios as large as 20.5 %, centered at 1.55 μm, may become possible in the future. 相似文献
6.
Won Hoe Koo Wooram Youn Peifen Zhu Xiao‐Hang Li Nelson Tansu Franky So 《Advanced functional materials》2012,22(16):3454-3459
Defective silica sphere arrays having locally hexagonal‐closed‐packed structure but lack of long range ordering were incorporated into organic light emitting diodes as grating to extract the waveguided light trapped in the indium tin oxide/organic layers and the glass substrate. Using these defective hexagonal‐closed‐packed gratings for light extraction, broad band lambertian emitters are obtained due to the periodicity broadening and the random orientation in the gratings, resulting in enhancements in current and power efficiencies by a factor of 1.7 and 1.9, respectively. 相似文献
7.
Sanna Arpiainen Fredrik Jonsson James R. Dekker Gudrun Kocher Worawut Khunsin Clivia M. Sotomayor Torres Jouni Ahopelto 《Advanced functional materials》2009,19(8):1247-1253
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process. 相似文献
8.
Mixed self‐assembled monolayers (SAMs) with different ratios of –OH to –CH3 groups were used to modify the surface free energies of the Si substrates from 64 to 29 mN m–1. The TiO2 thin films were grown on the mixed SAM‐coated Si substrates by atomic layer deposition (ALD) from titanium isopropoxide and water. A two‐dimensional growth mode is observed on the SAMs‐coated substrates possessing high surface free energies. As the surface free energy decreases, a three‐dimensional growth mode begins to dominate. These observations indicate that the mixed SAMs can control the growth modes of the atomic layer deposition by modifying of the surface free energies of the substrates. 相似文献
9.
We have developed a photochemically controlled photonic‐crystal material by covalently attaching spiropyran derivatives to polymerized crystalline colloidal arrays (PCCAs). These PCCAs consist of colloidal particles that self‐assemble into crystalline colloidal arrays (CCAs), which are embedded in crosslinked hydrogels. Photoresponsive PCCAs were made two ways: 1) by functionalizing the hydrogel network with spiropyran derivatives, and 2) by functionalizing the colloidal particles with spiropyran derivatives. These materials can diffract light in the UV, visible, or near‐IR spectral regions. The diffraction of the PCCAs is red‐shifted by exciting the spiropyran with UV light. Alternatively, the diffraction is blue‐shifted by exciting the spiropyran with visible irradiation. Thus, this material acts as a memory storage material where information is recorded by illuminating the PCCA and information is read out by measuring the photonic‐crystal diffraction wavelength. UV excitation forms the open spiropyran form while visible excitation forms the closed spiropyran form. The diffraction shifts result from changes in the free energy of mixing of the PCCA system as the spiropyran is photoexcited to its different stable forms. 相似文献
10.
The fabrication and characterization of two‐photon polymerized features written within and outside of colloidal crystals is presented. Two‐photon polymerization (TPP) response diagrams are introduced and developed to map the polymerization and damage thresholds for features written via modulated beam rastering. The use of tris[4‐(7‐benzothiazol‐2‐yl‐9,9‐diethylfluoren‐2‐yl)phenyl]amine (AF‐350) as an initiator for TPP is demonstrated for the first time and TPP response diagrams illustrate the polymerization window. These diagrams also demonstrate that the polymerization behavior within and outside of colloidal crystals is similar and electron microscopy reveals nearly identical resolution. Fluorescence confocal microscopy further enables visualization of non‐self‐supporting, three‐dimensional TPP features within self‐assembled photonic crystals. Finally, microspot spectroscopy is collected from a two‐photon feature written within a colloidal crystal and this is compared with simulation. 相似文献
11.
利用乳液聚合方法制备了粒径约为262 nm的单分散聚苯乙烯(PS)微球。通过控制溶剂蒸发温度和液体表面下降的速度,用垂直沉积法较快速地制备出了在较大范围呈现很好有序性的密排结构聚苯乙烯胶体光子晶体,其在626 nm波长处存在光子带隙。在扫描电子显微镜(SEM)下,观察到该胶体光子晶体是面心立方(fcc)密排结构。实验结果表明,对于粒径为262 nm的聚苯乙烯微球,在温度为55℃,质量分数为0.3%的情况下,当液体表面下降的速度约为每天3 mm时,可以得到高质量的胶体光子晶体。这种高质量的胶体光子晶体可以为利用模板技术制备具有完全带隙的有序孔结构提供较理想的模板。 相似文献
12.
单原子层沉积原理及其应用 总被引:5,自引:0,他引:5
传统的薄膜材料制造方法已不能满足未来元器件和集成电路制造的要求,原子层沉积技术由于具有精确的厚度控制、沉积厚度均匀性和一致性等特点,已成为解决微电子制造相关超薄膜材料制造问题的主要解决方法之一,也将成为新的纳米材料和纳米结构的制造方法之一。综述了原子层沉积技术的原理、技术设备要求和应用。 相似文献
13.
A fast and highly controllable method of fabricating large films of photonic crystals of colloids is reported. A charge‐stabilized colloidal suspension was run in a flat capillary driven by a pressure‐regulated air pulse. The colloidal crystal texture formed in the capillary was a sensitive function of air pressure. Above a critical pressure, the entire capillary was filled with a uniform single‐domain texture whose transmittance spectrum showed a high quality as a photonic crystal, i.e., excellent opacity at a photonic bandgap and high transparency at other wavelengths. The present method is easily applicable to industrial processes for mass production. 相似文献
14.
C. Paquet F. Yoshino L. Levina I. Gourevich E.H. Sargent E. Kumacheva 《Advanced functional materials》2006,16(14):1892-1896
We report a method for producing colloidal crystals heavily loaded with PbS quantum dots (QDs). The approach employed uses capillary forces to load the QDs in the interstitial voids of the colloid crystals and yields highly ordered structures with a high loading of QDs. The infiltration process is qualitatively monitored using confocal fluorescence microscopy and scanning electron microscopy. The optical properties of the resulting composite structure are examined using optical spectroscopy. The shift in the stopband resulting from the infiltration of the colloid crystal shows that the PbS QDs occupy nearly 100 % of the volume of the interstitial space. 相似文献
15.
Catherine Marichy Nicola Donato Marc‐Georg Willinger Mariangela Latino Dmitry Karpinsky Seung‐Ho Yu Giovanni Neri Nicola Pinna 《Advanced functional materials》2011,21(4):658-666
A new atomic layer deposition (ALD) process for nanocrystalline tin dioxide films is developed and applied for the coating of nanostructured materials. This approach, which is adapted from non‐hydrolytic sol‐gel chemistry, permits the deposition of SnO2 at temperatures as low as 75 °C. It allows the coating of the inner and outer surface of multiwalled carbon nanotubes with a highly conformal film of controllable thickness. The ALD‐coated tubes are investigated as active components in gas‐sensor devices. Due to the formation of a p‐n heterojunction between the highly conductive support and the SnO2 thin film an enhancement of the gas sensing response is observed. 相似文献
16.
Silicon dioxide (SiO2) films prepared by plasma‐enhanced atomic‐layer deposition were successfully grown at temperatures of 100 to 250 °C, showing self‐limiting characteristics. The growth rate decreases with an increasing deposition temperature. The relative dielectric constants of SiO2 films are ranged from 4.5 to 7.7 with the decrease of growth temperature. A SiO2 film grown at 250 °C exhibits a much lower leakage current than that grown at 100°C due to its high film density and the fact that it contains deeper electron traps. 相似文献
17.
Xiaobin Yang Pan Sun Huiru Zhang Zijing Xia Ruben Z. Waldman Anil U. Mane Jeffrey W. Elam Lu Shao Seth B. Darling 《Advanced functional materials》2020,30(15)
Improvements in energy–water systems will necessitate fabrication of high‐performance separation membranes. To this end, interface engineering is a powerful tool for tailoring properties, and atomic layer deposition (ALD) has recently emerged as a promising and versatile approach. However, most non‐polar polymeric membranes are not amenable to ALD processing due to the absence of nucleation sites. Here, a sensitization strategy for ALD‐coating is presented, illustrated by membrane interface hydrophilization. Facile dip‐coating with polyphenols effectively sensitizes hydrophobic polymer membranes to TiO2 ALD coating. Tannic acid‐sensitized ALD‐coated membranes exhibit outstanding underwater crude oil repulsion and rigorous mechanical stability through bending and rinsing tests. As a result, these membranes demonstrate outstanding crude oil‐in‐water separation and reusability compared to untreated membranes or those treated with ALD without polyphenol pretreatment. A possible polyphenol‐sensitized ALD mechanism is proposed involving initial island nucleation followed by film intergrowth. This polyphenol sensitization strategy enriches the functionalization toolbox in material science, interface engineering, and environmental science. 相似文献
18.
Efficient Charge Injection in Organic Field‐Effect Transistors Enabled by Low‐Temperature Atomic Layer Deposition of Ultrathin VOx Interlayer 下载免费PDF全文
Yuanhong Gao Youdong Shao Lijia Yan Hao Li Yantao Su Hong Meng Xinwei Wang 《Advanced functional materials》2016,26(25):4456-4463
Charge injection at metal/organic interface is a critical issue for organic electronic devices in general as poor charge injection would cause high contact resistance and severely limit the performance of organic devices. In this work, a new approach is presented to enhance the charge injection by using atomic layer deposition (ALD) to prepare an ultrathin vanadium oxide (VOx) layer as an efficient hole injection interlayer for organic field‐effect transistors (OFETs). Since organic materials are generally delicate, a gentle low‐temperature ALD process is necessary for compatibility. Therefore, a new low‐temperature ALD process is developed for VOx at 50 °C using a highly volatile vanadium precursor of tetrakis(dimethylamino)vanadium and non‐oxidizing water as the oxygen source. The process is able to prepare highly smooth, uniform, and conformal VOx thin films with precise control of film thickness. With this ALD process, it is further demonstrated that the ALD VOx interlayer is able to remarkably reduce the interface contact resistance, and, therefore, significantly enhance the device performance of OFETs. Multiple combinations of the metal/VOx/organic interface (i.e., Cu/VOx/pentacene, Au/VOx/pentacene, and Au/VOx/BOPAnt) are examined, and the results uniformly show the effectiveness of reducing the contact resistance in all cases, which, therefore, highlights the broad promise of this ALD approach for organic devices applications in general. 相似文献
19.
20.
J. M. van den Broek L. A. Woldering R. W. Tjerkstra F. B. Segerink I. D. Setija W. L. Vos 《Advanced functional materials》2012,22(1):25-31
Three dimensional photonic band gap crystals with a cubic diamond‐like symmetry are fabricated. These so‐called inverse‐woodpile nanostructures consist of two perpendicular sets of pores in single‐crystal silicon wafers and are made by means of complementary metal oxide–semiconductor (CMOS)‐compatible methods. Both sets of pores have high aspect ratios and are made by deep reactive‐ion etching. The mask for the first set of pores is defined in chromium by means of deep UV scan‐and‐step technology. The mask for the second set of pores is patterned using an ion beam and carefully placed at an angle of 90° with an alignment precision of better than 30 nm. Crystals are made with pore radii between 135–186 nm with lattice parameters a = 686 and c = 488 nm such that a/c = √2; hence the structure is cubic. The crystals are characterized using scanning electron microscopy and X‐ray diffraction. By milling away slices of crystal, the pores are analyzed in detail in both directions regarding depth, radius, tapering, shape, and alignment. Using optical reflectivity it is demonstrated that the crystals have broad reflectivity peaks in the near‐infrared frequency range, which includes the telecommunication range. The strong reflectivity confirms the high quality of the photonic crystals. Furthermore the width of the reflectivity peaks agrees well with gaps in calculated photonic band structures. 相似文献