首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of thermosensitive hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm) and sodium‐2‐acrylamido‐2‐methylpropyl sulfonate (NaAMPS). Factors such as temperature and initial total monomer concentration and different pH solutions were investigated. Results indicated that the more the NaAMPS content in hydrogel system, the higher the swelling ratio and the gel transition temperature; the higher the initial monomer concentration, the lower the swelling ratio. The result also indicated that the NIPAAm/NaAMPS copolymeric hydrogels had different swelling ratios in various pH environments. The present gels showed a pH‐reversible property between pH 3 and pH 10 and thermoreversibility. The swelling ratios of copolymeric gels were lower in a strong alkaline environment because the gels were screened by counterions. Finally, the drug release behavior of these gels was also investigated in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1760–1768, 2000  相似文献   

2.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

3.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

4.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003  相似文献   

5.
Summary: Temperature‐responsive hydrogels based on linear HPC and crosslinked P(NTBA‐co‐AAm) were prepared by the semi‐IPN technique. The structure of these semi‐IPN hydrogels was investigated by FT‐IR spectroscopy. An increase in normalized band ratios (A2980/A1665) was observed with increasing HPC content in the initial mixture. The swelling kinetics and water transport mechanism of these semi‐IPN hydrogels were examined and their temperature responsive behaviors were also investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these semi‐IPN hydrogels underwent a volume phase transition between 18 and 22 °C irrespective of the amounts of MBAAm and HPC. However, below the volume phase transition temperature, their equilibrium swelling ratios were affected by the amount of MBAAm and HPC. The pulsatile swelling experiments indicated that the lower the MBAAm and the higher HPC contents in semi‐IPN hydrogels the faster the response rate temperature change.

Equilibrium swelling ratios of the semi‐IPN P(NTBA‐co‐AAm)/HPC hydrogels in water shown as a function of temperature.  相似文献   


6.
Temperature‐ and pH‐responsive semiinterpenetrating polymer network (SIPN) hydrogels, constructed with chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were studied. The characterizations of the IPN hydrogels were investigated by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and swelling tests, under various conditions. CS/PDADMAC SIPN hydrogels exhibited a relatively high swelling ratio, in the range of 248–462%, at 25°C. The swelling ratio of CS/PDADMAC IPN hydrogels are pH, temperature, and ionic concentration dependent. DSC was used for the quantitative determination of the amounts of freezing and nonfreezing water. The amount of free water increased with increasing PDADMAC content in the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2876–2880, 2004  相似文献   

7.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005  相似文献   

8.
Amino semitelechelic poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by radical polymerization with aminoethanethiol hydrochloride as a chain‐transfer agent. Semi‐interpenetrating polymer network (semi‐IPN) hydrogels, composed of alginate and amine‐terminated PNIPAAm, were prepared by crosslinking with calcium chloride. From the swelling behaviors of semi‐IPNs at various pH's and Fourier transform infrared spectra at high temperatures, the formation of a polyelectrolyte complex was confirmed from the reaction between carboxyl groups in alginate and amino groups in modified PNIPAAm. Semi‐IPN hydrogels reached an equilibrium swelling state within 24 h. The water state in hydrogels, investigated by differential scanning calorimetry, showed that sample CAN55 [alginate/PNIPAAm (w/w) = 50/50] exhibited the lowest equilibrium water content and free water content among the hydrogels tested, which was attributed to its more compact structure compared to other samples and the high content of interchain bonding within the hydrogels. Alginate/PNIPAAm semi‐IPN hydrogels exhibited a reasonable sensitivity to the temperature, pH, and ionic strength of swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1128–1139, 2002  相似文献   

9.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS)/hyaluronic acid (HA) interpenetrating polymer network (IPN) hydrogels have been prepared by using the sequential‐IPN method. The IPN hydrogels exhibited swelling behavior in solutions at various pHs, in NaCl solutions, and under electrical DC stimulation. The IPN hydrogels were highly swollen in water, but lost much of their water capacity when transferred to solutions having a high ionic strength. The IPN hydrogels showed a significant responsive deswelling in an applied electric field. This behavior indicates the potential application of IPN hydrogels as biomaterials. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1731–1736, 2004  相似文献   

12.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

13.
For to be used in controlled releasing of piperacillin‐tazobactam, a series of semi and full IPN type hydrogels composed of acrylic acid (AA), acrylamide (AAm) and Chitosan (CS) were prepared via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used for crosslinking of PAAm and PAA chains to form semi‐IPN hydrogels. However, the full‐IPN type hydrogels were prepared by using glutaraldehyde (GA) and EGDMA as cocrosslinkers. Characteristics of the hydrogels were investigated by swelling experiments and SEM and FTIR analysis. Generally, full‐IPN type hydrogels swell much more than the semi‐IPN types. By comparing the full‐IPN type hydrogels in between, it is found that the increasing amount of GA causes the decreasing in S% values from 4860 to 4300%. Releasing of piperacillin‐tazobactam from selected three hydrogels were investigated in phosphate buffer solution at pH = 7.4, 37°C. The kinetic release parameters, n and k were calculated and non‐Fickian type diffusion was established for these hydrogels. The behaviors of the piperacillin‐tazobactam loaded hydrogels in Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) culture suspensions were also studied and the statistically significant differences for the microorganism growth values were determined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Temperature‐ and pH‐responsive interpenetrating polymer network (IPN) hydrogels, with sodium alginate (SA) and poly(diallydimethylammonium chloride) (PDADMAC), constructed by a sequential IPN method, were studied. The characterizations of the IPN hydrogels were investigated by FTIR, DSC, and swelling tests under various conditions. The prepared IPN hydrogels exhibited relatively high swelling ratios, in the range of 380–690%, at 25°C. The swelling ratios of SA/PDADMAC IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the freezing and nonfreezing water contents of the hydrogels. The amount of free water increased with the increasing PDADMAC content of the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3705–3709, 2004  相似文献   

15.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

16.
pH‐ and temperature‐responsive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide‐co‐sodium acrylate) were successfully prepared. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analyzer. The equilibrium and dynamic swelling/deswelling behaviors and the drug release properties of the hydrogels responding to pH and/or temperature were also studied in detail. The hydrogels have the porous honeycomb structures, good miscibility and thermal stability, and good pH‐ and temperature‐responsivity. The volume phase transition temperature of the hydrogels is ca. 40°C. Changing the soy protein or crosslinker content could be used to control the swelling behavior and water retention, and the hydrogels have the fastest deswelling rate in pH 1.2 buffer solutions at 45°C. Bovine serum albumin release from the hydrogels has the good pH and temperature dependence. The results show that the proposed IPN hydrogels may have potential applications in the field of biomedical materials such as in drug delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39781.  相似文献   

17.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Novel pH‐responsive polyglycerol (PG)‐based hydrogels were successfully synthesized through the reaction of epichlorohydrin with L ‐lactic acid (LLA) in the presence of sodium hydroxide (NaOH), and cetyltrimethylammonium bromide as a phase transfer catalyst at room temperature, followed by hydrolysis, polymerization, and crosslinking reactions. The resultant gel was characterized by carbon nuclear magnetic resonance spectroscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared measurement, and it was found that incorporated LLA was bound to PG network as a pendant acidic substituent by the hydroxyl group of LLA (PGL gel). The PGL hydrogels with different LLA contents and equilibrium swelling ratios (ESRs) were prepared by changing the feed ratios of materials. The results determined by chemical titration showed that under the applied conditions the efficiency of introducing the carboxyl group into PG network was about 86% and the amount of LLA in the hydrogel reached to about 17 wt %. The swelling behavior of the hydrogels in different environmental mediums was investigated, and the results showed that the hydrogels are pH‐, ionic strength‐, and cationic charge‐responsive. The hydrogels also have the reversible swelling/deswelling properties. These pH‐responsive PG‐based hydrogels will have potential applications in biomedical and related areas. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A series of interpenetrating polymer networks (IPN) hydrogels with different compositions that based on xanthan gum (XG) and poly(aspartic acid) (PASP) were synthesized. The effects of various external surrounding stimuli, including pH, temperature, and ionic strength on XG–PASP hydrogels swelling properties were investigated. Chemical structural changes of the IPN hydrogels were characterized by Fourier transform infrared spectroscopy (FT‐IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and swelling ratio measurement. The swelling process was found to be a Fickian diffusion and reached swelling equilibrium quickly. It was found that the feed composition of PASP was an important factor that affected the properties of IPN hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Novel hydrogels of interpenetrating polymer networks (IPNs) composed of polyacrylamide and poly(γ‐glutamic acid) were synthesized. In these systems, both polymers were crosslinked independently; this reduced the potential loss of a polymer during the washing process, as often occurs in semi‐IPN systems. Interpolymer interactions were investigated with Fourier transform infrared spectroscopy and differential scanning calorimetry. These studies suggested possible interactions between both polymers by the formation of hydrogen bonds. The swelling behavior of these hydrogels was analyzed by immersion of the hydrogel samples in deionized water at 25 and 37°C and in buffer solutions with pHs of 3, 7, and 10. The kinetics of swelling showed increases in the values of the swelling ratio with increasing immersion time in the swelling medium, molar proportion of the biopolymer in the hydrogel, temperature, and pH of the swelling medium. All of the hydrogels swelled rapidly and reached equilibrium in an average time of 40 min. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号