首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了pH对L-半胱氨酸自组装膜修饰电极的影响,发现该膜对间苯二酚的电化学氧化具有明显的催化作用.在pH =6.86的L-半胱氨酸溶液中制得的膜最致密.在pH =5的醋酸钠-醋酸缓冲溶液中,间苯二酚在L-半胱氨酸自组装膜修饰电极上产生一灵敏的氧化峰,且峰电流与间苯二酚浓度在0.1-0.6mmol/L范围内呈良好的线性关...  相似文献   

2.
将L-半胱氨酸(L-Cys)自组装到金电极表面制成L-Cys/Au修饰电极,并用电化学方法研究了它的电化学性质。研究了葡萄糖在自组装膜修饰电极上的电化学氧化行为,实验表明,该膜对葡萄糖的氧化有催化作用。  相似文献   

3.
构筑了一种聚L-酪氨酸修饰的玻碳电极(PLT/GCE)并将其应用于对硝基苯酚(p-NP)的电催化性能研究。分别利用扫描电子显微镜(SEM)及电化学的方法对其进行了表征,并考察了p-NP在聚L-酪氨酸修饰电极上的电化学行为。结果显示:与裸电极相比,聚L-酪氨酸修饰电极显著增大了对硝基苯酚(p-NP)电化学响应信号。且在0. 05~50. 6μM的线性范围内,峰电流与浓度呈现出良好的线性关系,检出限为0. 016μM(S/N=3)。稳定性及重现性良好。  相似文献   

4.
报道了一种新型聚吡咯-酰基吡唑啉酮复合膜修饰玻碳电极(Ppy/HPMαFP/GCE)对酚磺乙胺(ETH)电化学性质及其反应机理的研究。酚磺乙胺的电化学性质检测运用循环伏安法和脉冲伏安法。实验表明,与裸GCE和Ppy/GCE相比,Ppy/HPMαFP/GCE修饰电极对酚磺乙胺有良好的催化作用。聚吡咯与酰基吡唑啉酮产生了协同增效作用。在pH=5.5的磷酸盐(PBS)缓冲溶液中,该修饰电极测试ETH的CV曲线于0.35V和0.4V出现一对灵敏的氧化还原峰,峰电位差△Ep较裸玻碳电极降低510mV,比Ppy修饰电极降低100mV,峰电流显著增加。在最佳条件下,氧化峰电流与ETH浓度于2.0×10-6~1.0×10-4mol.L-1范围内呈现良好的线性关系,检出限为6.0×10-7mol.L-1。  相似文献   

5.
制备了一种新型复合膜修饰电极[GdL3(HL)]·H2O(HL=1-对甲苯基-3-甲基-4-(α-呋喃甲酰基)-5-吡唑啉酮)/聚2,2-联吡啶(Pbpy)/玻碳电极(GCE)。运用循环伏安法(CV)和脉冲伏安法(DPV),研究了电极对食品添加剂2,6-二叔丁基-4-甲基苯酚(BHT)的电化学反应与机理。与裸电极和Pbpy/GCE相比,新修饰电极测定BHT的氧化峰电流和灵敏度均显著提高。在pH=5.0,该修饰电极测试的CV曲线于Ep=0.212V处出现一个灵敏的氧化峰。峰电位差△Ep较GCE、Pbpy/GCE分别降低400mV、42mV,峰电流明显增加。在最佳条件下,氧化峰电流与BHT浓度于6.0×10-6~2.0×10-4mol·L-1范围内呈现良好的线性关系,检出限为1×10-8mol/L。  相似文献   

6.
刘晓琴  唐洁 《应用化工》2013,(3):460-462
通过电化学法将二氧化硅和金纳米粒子同步沉积到玻碳电极表面,制得Au/SiO2纳米粒子修饰电极(Nano-Au/SiO2/GCE)。采用电子扫描显微镜和交流阻抗考察该修饰电极形貌及其电化学性能,并研究了NADH在该修饰电极上的电化学行为。结果表明,NADH在修饰电极上的氧化峰峰电位降低约300 mV,峰电流明显增大。在最佳实验条件下,其电流响应与NADH浓度在1.0×10-6~1.0×10-4mol/L呈良好的线性关系,相关系数0.998。  相似文献   

7.
以羧基化碳纳米管(CNT-COOH)溶液作为支持电解质,采用多电位阶跃电沉积方法将CNTs和纳米金同步直接沉积到玻碳电极表面,制备了对邻苯二酚(CAT)具有很高的电催化氧化作用的纳米金-碳纳米管修饰电极(Au/CNTs/GCE),其催化效果强于单独的金纳米粒子或碳纳米管修饰电极。通过优化沉积时间、pH和扫速对修饰电极的影响,并考察了在最佳条件下CAT在Au/CNTs/GCE修饰电极上的电化学行为,发现CAT在该修饰电极上发生可逆的氧化还原反应,响应电流与浓度在4.0×10-6~8.0×10-5mol/L和1.0×10-4~1.0×10-3mol/L范围内呈线性关系,相关系数分别为0.9996和0.9985,检出限为4.5×10-7mol/L(S/N)。  相似文献   

8.
利用循环伏安法将L-甲硫氨酸修饰到裸玻碳电极表面,成功制备出聚L-甲硫氨酸修饰电极(PLM/GCE);分别采用循环伏安法和差分脉冲伏安法探讨修饰电极的电化学性能和对氯苯酚在该修饰电极上的电化学行为。结果发现,PLM/GCE在最优条件下,在8.0×10-6~1.0×10-4mol/L浓度范围内的氧化峰电流值与浓度呈现出较好的线性相关,线性方程为Ip=0.244 1C+1.129 6,r=0.999 1。研究表明,PLM/GCE可用于对氯苯酚的电化学检测。  相似文献   

9.
刘晓琴  唐洁 《应用化工》2013,42(6):1039-1042
通过电化学方法制备了聚亚甲基蓝/纳米二氧化硅复合膜修饰电极(PMB-nano-SiO2/GCE),采用扫描电子显微镜(SEM)和交流阻抗法(EIS)对复合膜界面进行了表征,并研究了烟酰胺腺嘌呤二核苷酸(NADH)在修饰电极表面的电化学行为。结果表明,在pH 7.0的磷酸盐缓冲溶液中,NADH氧化峰电位降低和峰电流明显增加,表明该修饰电极对NADH具有良好的电催化氧化性能。NADH浓度在1.0~100.0μmol/L浓度范围内与峰电流呈良好的线性关系,相关系数为0.997。  相似文献   

10.
制得一种复合膜修饰玻碳电极HPMαFP/Ppy/GCE(HPMαFP:1-苯基-3-甲基-4-(α-呋喃甲酰基)-5-吡唑啉酮,/Ppy:聚吡咯,GCE:玻碳电极)。通过循环伏安法(CV)和脉冲伏安法(DPV)研究了氧氟沙星(OFL)在电极上的电化学行为。该修饰电极显现特定的测定氧化峰电流和高检测灵敏度。在pH=7,扫速为100mV·s-1的条件下,测试OFL的CV曲线于Ep=0.88 V出现一不可逆的氧化峰。氧化峰电流与OFL浓度在2.0×10-6~1.0×10-4mol·L-1范围内呈良好的线性关系。检出限为6.5×10-8mol·L-1。  相似文献   

11.
将玻碳电极(GCE)浸入氯金酸溶液中,采用循环伏安法在GCE表面进行沉积,得到金纳米粒子修饰GCE(Au/GCE)。Au/GCE在铁氰化钾溶液的表征中展现了较高导电性。将Au/GCE应用于双酚A(BPA)的电化学检测,获得了BPA在0. 1~30μmol/L范围内的工作曲线,检出限为0. 028μmol/L (3σ)。考察了干扰物质对Au/GCE检测BPA的影响,相对标准偏差小于5. 0%。  相似文献   

12.
电化学氧化技术在四环素类抗生素废水处理过程中存在氧化电位高,且电极发生严重腐蚀等现象,通过对电极进行修饰,以降低电极的过电势,增加电流响应,提高电极的选择性和灵敏度。本文采用滴涂法分别制备了多壁碳纳米管修饰电极(MWCNTs/GCE)和石墨烯修饰电极(Graphene/GCE),采用循环伏安法和交流阻抗法对修饰电极电化学性能进行了表征。结果表明修饰材料已经成功修饰在电极表面;通过对比四环素在两种修饰电极上的电化学行为,发现四环素在MWCNTs/GCE电极上的电化学响应信号明显,且氧化峰电位明显降低。  相似文献   

13.
《应用化工》2022,(7):1452-1456
制备了壳聚糖-碳纳米管修饰玻碳电极(CHIT-MWCNTs/GCE)、二茂铁修饰玻碳电极(Fc/GCE)两种修饰玻碳电极,结果表明,制备的修饰玻碳电极对抗坏血酸(AA)的氧化有明显电催化作用。用CHIT-MWCNTs/GCE、Fc/GCE两种电极来检测水中AA浓度,利用循环伏安CV曲线分析电流和电位的变化得到AA在修饰玻碳电极上的电化学行为。结果表明,p H=5.97,磷酸缓冲溶液(PBS)浓度为50 mmol/L的支持电解质溶液下,制备的修饰玻碳电极有效检测AA的浓度范围为0.110 mmol/L,检出限为0.01 mmol/L。扫描速度与峰电流呈良好的线性相关关系y=-0.080 31X-1.994 53,r=-0.99,表明该反应机理受吸附控制。  相似文献   

14.
采用电沉积法结合表面滴涂法制备了纳米氧化镍/单壁碳纳米管修饰玻碳电极(NiO_x/SWCNTs/GCE),通过循环伏安法、扫描电子显微镜对修饰电极进行了表征,运用方波伏安法和循环伏安法研究了木犀草素在NiO_x/SMWCNTs/GCE修饰电极上的电化学行为。结果表明,电极表面纳米氧化镍和单壁碳纳米管的存在对木犀草素具有良好的电催化活性,电极稳定性高,表面可以更新。在pH 2.8±0.2的伯瑞坦-罗宾森缓冲溶液中,木犀草素在NiO_x/SWCNTs/GCE修饰电极上的氧化、还原峰电位均负移,峰电流明显增加,据此,建立了测定木犀草素的方法。在-0.2~0.6 V电位区间内,在方波伏安曲线上的还原峰电位E为0.43 V,峰电流I木犀草素浓度在2.4×10~(-6)~1.0×1.0~(-10) mol/L范围内与电位有良好的线性关系,线性回归方程为I=5.39×10~6c+4.171 6,R~2=0.999,检出限(3S/N)为3.4×10~(-11) mol/L,此方法用于砂珍棘豆中木犀草素含量的测定。样品回收率为98.69%~104.40%,相对标准偏差为1.05%~1.37%。  相似文献   

15.
以多壁碳纳米管为原料制备氧化石墨烯纳米带(GONRs),通过红外光谱、紫外-可见吸收光谱和拉曼光谱对其进行表征。将制备好的GONRs脉冲电沉积到玻碳电极(GCE)表面制备修饰电极(GONRs/GCE),研究了盐酸四环素(TC)在GONRs/GCE上的电化学行为。结果表明,与裸玻碳电极相比,GONRs/GCE对TC有更高的电催化活性。TC在GONRs/GCE上发生受吸附控制的不可逆氧化反应,且在pH 3.0的柠檬酸-柠檬酸钠缓冲溶液中氧化峰电流最高。优化条件下,TC的氧化峰电流与浓度线性相关,线性范围为4.0×10~(-7)~1.0×10~(-4) mol/L,最低检测限为2.0×10~(-7) mol/L(S/N=3)。将该电极用于河水样品中TC的检测,加标回收率为97.2%~104.1%。  相似文献   

16.
合成分散性良好、超顺磁性纳米Fe3O4,通过原位还原Au3+得到Fe3O4@Au核壳结构。结果表明:金层厚度大约10 nm,通过Fe(2P3/2)峰从711.2移动到710.8 eV,说明金与Fe3O4之间有着强烈的静电作用。当修饰了L-半胱氨酸后,金表面折光率改变使得其等离子共振峰发生了蓝移。得到L-半胱氨酸Au@Fe3O4具有很好的水溶性和生物相容性,在生物医学、催化等领域将有潜在的应用价值。  相似文献   

17.
通过循环伏安法将L-半胱氨酸电化学组装到铜电极上,用交流阻抗法和循环伏安法研究了循环扫描周数以及组装时间与峰电流的关系,并研究了扫描速度对L-半胱氨酸膜的影响,结果表明L-半胱氨酸膜的氧化峰电流与扫描速度的平方根成正比,说明L-半胱氨酸在铜电极上的电化学组装过程受扩散控制。  相似文献   

18.
在玻碳电极基底上,采用两步电化学聚合法制备了一种聚谷氨酰胺/含钬离子杂金属氰桥配位聚合物复合修饰电极(Poly(L-glutamine)/Ho(III)-Fe(III)-WO42-CyHMCP/GCE)。以此复合修饰电极为工作电极,用示差脉冲伏安法(DPV)研究了叶酸的直接电化学氧化行为。结果表明:此复合修饰电极对叶酸的直接电氧化反应呈现出优异的协同电催化活性,叶酸的氧化峰电流值与其浓度在5.00~600μmol·L-1的范围内呈现出良好的线性关系,线性回归方程为Ip (μA)=-0.04017+0.01159 CFA (μmol·L-1), R2=0.9994,检出限(LOD)为2.00μmol·L-1(S/N=3)。由此建立一种直接、快速测定实际试样中叶酸含量的新方法。以此方法对几种叶酸药剂片中叶酸含量测定,加标回收率达到95.9%~108.7%,测定结果令人满意  相似文献   

19.
采用循环伏安法在玻碳电极(GCE)上沉积一层聚3,4-乙撑二氧噻吩(PEDOT),然后将多壁碳纳米管(MWCNT)悬涂在制备好的电极表面,制备出多壁碳纳米管/PEDOT复合修饰玻碳电极。通过循环伏安法研究双酚A在该修饰电极上的电化学行为,实验发现,在pH为7. 0的磷酸盐缓冲溶液(PBS)中,双酚A在MWCNT/PEDOT-GCE上出现不可逆氧化峰,其峰电流与浓度在0. 051~4. 121μmol/L范围内呈良好的线性关系,检出限为0. 024μmol/L。结果表明,所制备的修饰电极增强了双酚A电化学信号,复合电极具有良好的稳定性、重现性和抗干扰能力。  相似文献   

20.
梁宇  许朗晴  杨迎军  朱洪  贾明宏 《化学试剂》2019,41(11):1139-1144
研究碳基纳米材料与纳米金(GNPs)颗粒的组合方式对葡萄糖(GLU)催化检测性能的影响。以离子液体(IL)作为导电性质的粘合剂,将碳基材料粘合在电极表面,并电沉积纳米金颗粒,制备成修饰电极。通过改变碳基种类(多壁碳纳米管(MWCNTs)、单壁碳纳米管(SWCNTs)、单壁碳纳米角(SWCNHs)、羧化石墨烯(C-GR))制备多种纳米碳修饰电极,对葡萄糖进行电化学检测和优化。实验发现,碳基材料性质影响葡萄糖传感器的灵敏度。其催化效果是MWCNTsSWCNTsC-GRSWCNHs,结果显示纳米材料电子加速通道对其催化性能起关键作用,碳基修饰层上电沉积的单层纳米金对葡萄糖的检测灵敏。通过SEM表征发现,相比于裸玻碳电极(GCE),纳米碳管上电沉积的纳米金颗粒尺寸更微小,且分散在碳纳米管上。组合有利于碳基与纳米金颗粒催化效应的发挥。制备了一种高灵敏无酶葡萄糖传感器,并尝试用于实际血清加标回收检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号