首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
唐世洪  田力 《材料导报》2011,(1):322-324
以纯度为99.9%的98%(质量分数)ZnO、2%(质量分数)A12O3陶瓷靶为溅射靶材,采用射频磁控溅射法在玻璃衬底上制备了Al203掺杂的ZnO薄膜。采用X射线衍射仪、扫描电子显微镜、紫外可见光谱仪等方法测试和分析了不同衬底温度、溅射偏压以及退火工艺对ZAO薄膜形貌结构、光电学性能的影响。结果表明,在衬底温度200...  相似文献   

2.
制备参数对类金刚石(DLC)薄膜的性能和结构有显著影响。利用中频脉冲非平衡磁控溅射新技术制备了DLC薄膜,采用Raman光谱、X射线光电子能谱仪、纳米压痕仪、光谱型椭偏仪研究了溅射电压对DLC薄膜微观结构、力学性能和光学性能的影响。结果表明:当溅射电压由550 V增加到750 V时,DLC薄膜中sp3杂化碳含量随溅射电压的增加而增加,当溅射电压超过750 V时,薄膜中sp3杂化碳含量随溅射电压的增加而减少;DLC薄膜的纳米硬度、折射率均随溅射电压的增加先增加而后减小,溅射电压为750 V时制备薄膜的纳米硬度及折射率最大。  相似文献   

3.
在等离子体化学气相沉积系统(PECVD)中,使用高氢稀释硅烷(SiH_4)加乙烯(C_2H_4)为反应气氛制备了纳米硅碳(nc-SiC_x:H)薄膜。随着(C_2H_4+SiH_4)/H_2(X_g)从2%增加到5%时,由于H蚀刻效应的减弱,薄膜的晶态率从48%下降到8%,平均晶粒尺寸在3.5~10nm。当X_g≥6%时,生成薄膜为非晶硅碳(a-SiC_x:H)薄膜。nc-SiC~x:H薄膜的电学性质具有与薄膜的晶态率紧密相关的逾渗行为。本文将对nc-SiC_x:H薄膜的生长机制和晶化机制进行较详细讨论。  相似文献   

4.
在室温下,采用射频磁控溅射技术以较大的功率密度(7W/cm^2)沉积了一系列掺铝氧化锌(AZO)透明导电薄膜,探索了溅射压强对沉积速率及薄膜性能的影响。结果表明,当工作压强为2.OPa时,高速(67nm/min)沉积得到的薄膜的电阻率为2.63×10^-3Ω·cm,可见光平均透过率为83%,并且在薄膜表面有一定的织构。  相似文献   

5.
以纯度为99.9%的98%(质量分数)ZnO、2%(质量分数)Al_2O_3陶瓷靶为溅射靶材,采用射频磁控溅射法在玻璃衬底上制备了Al_2O_3掺杂的ZnO薄膜。采用X射线衍射仪、扫描电子显微镜、紫外可见光谱仪等方法测试和分析了不同衬底温度、溅射偏压以及退火工艺对ZAO薄膜形貌结构、光电学性能的影响。结果表明,在衬底温度200℃、溅射时间30min、负偏压60V、退火温度300℃时制得的薄膜的可见光透过率为81%,最低电阻率为9.2×10~(-1)Ω·cm。  相似文献   

6.
使用磁过滤阴极真空电弧(FCVA)技术制备不同厚度的超薄四面体非晶碳膜(ta-C),研究了表征和测量超薄ta-C碳膜微观结构和性能的方法以及膜厚的影响。使用X射线衍射仪验证椭圆偏振光谱仪联用分光光度计表征膜厚度的可靠性并测量了膜密度;用拉曼谱分析薄膜的内在结构,验证用椭偏联用分光光度计表征sp3 C含量的可靠性;用Stoneys公式计算了薄膜的残余应力。结果表明,薄膜的厚度由7.6 nm增大到33.0 nm其沉积速率变化不大,为1.7±0.1 nm/min;根据椭偏联用分光光度计的表征结果,薄膜中sp3 C的含量逐渐减少,拓扑无序度降低,与拉曼谱的表征结果一致;厚度为7.6 nm的超薄ta-C碳膜中p3 C的含量最高;随着厚度的增大薄膜中的残余压应力从14 GPa降低到5 GPa;厚度为11.0 nm的薄膜主体层密度最大,为3070 kg/m3,致密性较好;厚度对薄ta-C碳膜表面粗糙度的影响较小。用椭偏和分光光度计测量超薄ta-C碳膜的厚度和表征显微结构是可行的,X射线反射法可用于测量超薄ta-C碳膜密度和表面粗糙度,但是对薄膜的质量要求较高。  相似文献   

7.
制备了以N,N-(2-羟乙基)-2-氨基乙磺酸钠(BES—Na)为亲水扩链剂的磺酸型水性聚氨酯,采用FT—IR、DSC对水性聚氨酯的结构进行表征,并研究了BES—Na含量和NCO/OH值对水性聚氨酯乳液和薄膜性能的影响。研究表明:随着BES—Na含量的增加,乳液粒径分布区间变窄,平均粒径由237.3nm减小至61.2nm,薄膜的力学性能有较大提高,拉伸强度由16.07MPa增至24.67MPa,断裂伸长率由478.73%增至724.07%,硬度增大,吸水率由6.82%增至13.03%;随着NCO/OH值的增大,乳液粒径分布变宽,平均粒径由77.6nm增至335.7nm,薄膜拉伸强度由11.46MPa增至22.28MPa,而断裂伸长率由555.61%降至22.9%,薄膜逐渐变得脆硬,硬度增大,吸水率由12.19%降至10.27%。  相似文献   

8.
SiCN薄膜的制备及其性能研究   总被引:1,自引:0,他引:1  
利用射频溅射法在Si衬底上制备了SiCN薄膜,并利用X射线衍射(XRD)、红外吸收谱(FTIR)和X射线光电子谱(XPS)对薄膜的结构、成份及化学键合状态进行了分析。结果表明,室温制备的SiCN薄膜为非晶状态,并形成了Si-C、Si-N和C-N键;而在高温下(衬底温度为800℃),薄膜中含有SiCN的晶体成分。此外,还利用原子力显微镜(AFM)对薄膜的表面形貌进行了研究,并进一步研究了样品的场发射性能。在场强为24V/μm时,最大发射电流可达3.3mA/cm^2。  相似文献   

9.
以镀有Mo过渡层的Al2O3衬底,在微波等离子体增强化学气相沉积(MPCVD)系统中.制备了非晶碳/Mo2C混合结构薄膜.反应气体为CH4和H2。在高真空室中测量了样品场发射特性。开启场强为0.55V/μm,在18V/μm电场下样品的发射电流密度为6.8mA/cm^2。发射点点密度〉10^3/cm^2。用SEM观察了表面形貌.Raman和XRD谱分析了薄膜的微观结构和成分。实验结果表明该薄膜是一种好的场致电子发射体。  相似文献   

10.
试样用王水溶解,于电感耦合等离子体原子发射光谱仪波长324.270(103)nm,342.124(98)nm处测定钯量。测定范围:1%-10%。本法试验了测定条件及试样分析,RSD-0.76%-0.83%,回收率98.4%-101.4%,适用于钯碳催化剂中钯的测定。  相似文献   

11.
Silicon carbon nitride thin films were deposited on Si (100) substrate at room temperature by plasma assisted radio frequency magnetron sputtering. The bonding structure and properties of SiCN films irradiated by pulsed electron beams were studied by means of X-ray photoelectron spectroscopy and nano-indentation. The results showed that electron beam irradiation had a great effect on the structure and property of the films. Under sputtering gas pressure of 3.7 Pa, a transition from the (Si,C)Nx bonded structure to the (Si,C)3N4 bonded structure was found in the SiCN thin film with electron beam irradiation. At sputtering gas pressure of 6.5 Pa, the enhancement of hardness in the SiCN film after treatment with electron beam irradiation resulted from the promotion of the sp3-hybridization of carbons bonds.  相似文献   

12.
《Vacuum》2012,86(4):457-460
Silicon carbon nitride thin films were deposited on Si (100) substrate at room temperature by plasma assisted radio frequency magnetron sputtering. The bonding structure and properties of SiCN films irradiated by pulsed electron beams were studied by means of X-ray photoelectron spectroscopy and nano-indentation. The results showed that electron beam irradiation had a great effect on the structure and property of the films. Under sputtering gas pressure of 3.7 Pa, a transition from the (Si,C)Nx bonded structure to the (Si,C)3N4 bonded structure was found in the SiCN thin film with electron beam irradiation. At sputtering gas pressure of 6.5 Pa, the enhancement of hardness in the SiCN film after treatment with electron beam irradiation resulted from the promotion of the sp3-hybridization of carbons bonds.  相似文献   

13.
《Thin solid films》2006,494(1-2):123-127
Hydrogen-free nanostructured carbon (nc-C) films were synthesized at various graphite target power densities using a closed field unbalanced magnetron sputtering system (CFUBM). The power density of each graphite target was varied from 10 to 30 W/cm2 in Ar gas atmosphere with a fixed pressure of 0.4 Pa and a substrate bias voltage of−200 V. The aim of this study was to determine the relationship between the microstructure and physical properties of nc-C films as a function of the target power density. The film structures were examined by Raman spectroscopy, X-ray photoelectron spectroscopy and field emission scanning electron microscopy. The physical properties of the nc-C films were evaluated using a nano-indentation tester, a 4-point probe and a residual stress tester. The number of graphitic nano-cluster increased with increasing target power density and a good conductive nanostructured carbon film was obtained. The nc-C film deposited at a target power density of 30 W/cm2 exhibited the minimum electrical resistivity.  相似文献   

14.
采用C2H2和N2作为反应气体、多晶Si作为靶材,利用射频磁控溅射系统沉积了SiCN薄膜。利用傅里叶红外光谱仪、X射线衍射仪、四探针测试仪等研究了C2H2流量对薄膜结构、介电常数以及阻挡性能的影响。结果表明,薄膜为非晶结构,1000℃退火下未出现结晶,稳定性很好;随着C2H2流量的增大,薄膜表面颗粒呈现增大趋势;C原子取代Si原子占据薄膜中的网络位置,薄膜形成了以C-N键为主的网络结构;制得的SiCN薄膜介电常数在4.2~5.8之间,C,N含量以及薄膜结构是影响介电性能的关键因素,高温使得Cu穿过薄膜中的缺陷与Si发生互扩散是薄膜阻挡性能失效的主要原因。  相似文献   

15.
Deposition and optical studies of silicon carbide nitride thin films   总被引:4,自引:0,他引:4  
Thin films of silicon carbide nitride (SiCN) have been prepared by reactive radioactive frequency (r.f.) sputtering using SiC target and nitrogen as the reactant gas. Deposition rates are studied as a function of deposition pressures and argon-nitrogen flow ratios. The optical absorption studies indicated the band edge shifting of the films when the nitrogen ratios are increased during deposition. Fourier transform infrared spectroscopy (FTIR) analysis on the films indicated several stretching modes corresponding to SiC, SiN and CN compositions.  相似文献   

16.
Nickel incorporated amorphous hydrogenated carbon (Ni/a:C-H) thin films were deposited onto the Si substrates via biased target ion beam sputtering of nickel combined with reactive ion beam deposition of a:C-H using CH4/Ar gas mixture. The effects of Ni doping and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy and nanoindentation. It was found that the Ni content in the films gets increased with increasing target bias voltage, and most of the Ni atoms react with C atoms to form NiCx phases in the Ni/a:C-H films. Moreover, the nickel carbide nanoparticles attain crystallinity even at low deposition temperature and get embedded in the cross-linked carbon matrix. It was found that the presence of Ni3C nanoparticles tends to increase the content of sp2 carbon, thus decreasing the hardness of Ni/a:C-H films as compared with that of a:C-H films. Additionally it was found that the nickel incorporated films do not show any adverse effect on the osteoblast cellular adhesion. Overall, these carbidic nanocrystals initiate direct graphitization and intend to change diamond-like to graphite-like carbon structure in Ni/a:C-H films with promising biocompatibility.  相似文献   

17.
Ag-containing diamond-like carbon (DLC) films were prepared on austenitic type stainless steel SUS316L and silicon wafer substrates by a process combining reactive magnetron sputtering with plasma source ion implantation (PSII). An Ag disc was used as a target for the sputter source with an RF power of 100 W. A mixture of the gases Ar and C2H2 was introduced into the discharge chamber while a negative high voltage pulse was applied to the substrate holder. By changing the gas flow ratios the resulting Ag content of the films could be varied. The prepared films were composed of amorphous carbon with crystalline Ag, as observed by X-ray diffractometry and TEM. Additional sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry and Raman spectroscopy. The surface morphology was observed by scanning electron microscopy. The antibacterial activity was determined using Staphylococcus aureus bacteria. All Ag-containing diamond-like carbon films exhibited an antibacterial activity with only small variations depending on the Ag content.  相似文献   

18.
The effects of argon neutral beam (NB) energy on amorphous carbon (a-C) films were investigated, the a-C films were deposited by a neutral particle beam assisted sputtering (NBAS) system. The energy of the neutral particle beam can be directly controlled by a reflector bias voltage as a unique operating parameter of the system. The results from the analysis by Raman spectra, Fourier transform infrared (FT-IR), UV-visible spectroscopy and electrical conductivity indicate the properties of the amorphous carbon films can be manipulated by simply adjusting the NB energy (or reflector bias voltage) without changing any other process parameters. By increasing the reflector bias voltage, the amount of cross-linked sp2 clusters as well as the sp3 bonding in the a-C film coating from the NBAS system can be increased effectively and the composition of carbon thin films can be changed from a nano-crystalline graphite phase to an amorphous carbon phase. In addition, the deposition rate increases with reflector bias voltage due to additional sputtering at the carbon reflector without any variation of physical and electrical properties of the a-C film.  相似文献   

19.
Silicon carbonitride (SiCN) films were prepared by means of reactive magnetron sputtering of a sintered SiC target on n-type Si (1 0 0) substrates in the reactant gas of nitrogen, and then the films were respectively annealed at 600, 800 and 1100 °C for 5 min in nitrogen ambient. The films were characterized by energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence (PL) spectrophotometry. Intense PL peaks at 370, 400 and 440 nm were observed at room temperature. The results show that annealing temperature and composition play an important role in the structures and PL properties of the films. The annealing temperature of 600 °C favors the formation of the SiC (1 0 9) crystal in the SiCN films, and results in a maximal PL peak. The intensity of the 440 nm PL peak can be improved by increasing the abundance of the Si-C bond.  相似文献   

20.
We present a study of the effect of particle bombardment on the preferred orientation and the residual stress of polycrystalline aluminum nitride (AlN) thin films for surface acoustic wave (SAW) applications. Films were deposited on silicon (100) substrates by radio frequency (RF) sputtering of an aluminum target in an argon and nitrogen gas mixture. The main deposition parameters were changed as follows: the total pressure from 4 mTorr to 11 mTorr, the N2 content in the gas mixture from 20% to 80%, and the substrate self-bias voltage from -10 V to -30 V. If a sufficiently high negative substrate self-bias voltage is induced, (00.2)-oriented films are obtained over the full ranges of pressure and N2 content. Such films have values of residual stress ranging from -3 GPa to +1 GPa, depending on the deposition conditions. Our results suggest that the energy of the Ar ions colliding with the substrate controls the preferred orientation of the films, whereas the directionality of the ions (for the same energy) is the main factor determining the residual stress. To demonstrate the suitability of our material for the intended application, SAW filters with good electroacoustic response have been fabricated using AlN thin films with optimized (00.2) orientation and controlled residual stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号