首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The central aim of this present study was to modify the reverse evaporation process, such that an enhanced entrapment, with increased storage stability and prolonged release, could be achieved, and to translate these advantages to increased therapeutic efficacy of daunorubicin hydrochloride on Dalton's ascitic lymphoma. Niosomes prepared exhibited entrapment efficiency 20% higher than theoretically possible by the reverse evaporation process. The niosomes were found to be very stable at a storage temperature of 4°C for a duration of three months. Even the drug leakage was restricted to just 10%. The in vivo studies suggested a prolonged release of 20 hr. Niosomal daunorubicin hydrochloride exhibited an enhanced anti-tumor efficacy when compared to free drug. The niosomal formulation was able to destroy the Dalton's ascitic lymphoma cells in the peritoneum within the third day of treatment, while free drug took around six days and the process was incomplete. The hematological studies also prove that the niosomal formulation was superior to free drug treatment. An enhanced mean survival time was achieved by the niosomal formulation that finally substantiates the overall efficacy of the niosomal formulation. This study suggests that the multilamellar vesicles obtained by the presently utilized reverse evaporation process resulted in vesicles that resisted the immediate lysis in the Kupffer cells, whereby a prolonged drug concentration was achieved which enhanced the cell lysis. But the major factor responsible for the quicker onset of action could be the increased permeability of the niosomes into the cell membrane and the cytoplasm of the Dalton's ascitic lymphoma cells.  相似文献   

2.
Encapsulation of Ganciclovir in lipophilic vesicular structure may be expected to enhance the oral absorption and prolong the existence of the drug in the systemic circulation. So the purpose of the present study was to improve the oral bioavailability of Ganciclovir by preparing nanosized niosomal dispersion. Niosomes were prepared from Span40, Span60, and Cholesterol in the molar ratio of 1:1, 2:1, 3:1, and 3:2 using reverse evaporation method. The developed niosomal dispersions were characterized for entrapment efficiency, size, shape, in vitro drug release, release kinetic study, and in vivo performance. Optimized formulation (NG8; Span60:Cholesterol 3:2 molar ratio) has shown a significantly high encapsulation of Ganciclovir (89?±?2.13%) with vesicle size of 144?±?3.47?nm (polydispersity index [PDI]?=?0.08). The in vitro release study signifies sustained release profile of niosomal dispersions. Release profile of prepared formulations have shown that more than 85.2?±?0.015% drug was released in 24?h with zero-order release kinetics. The results obtained also revealed that the types of surfactant and Cholesterol content ratio altered the entrapment efficiency, size, and drug release rate from niosomes. In vivo study on rats reveals five-time increment in bioavailability of Ganciclovir after oral administration of optimized formulation (NG8) as compared with tablet. The effective drug concentration (>0.69 µg/mL in plasma) was also maintained for at least 8?h on administration of the niosomal formulation. In conclusion, niosomes can be proposed as a potential oral delivery system for the effective delivery of Ganciclovir.  相似文献   

3.
Marketed topical gels of the antifungal drug naftifine hydrochloride contain 50% alcohol as cosolvent. Repeated exposure to alcohol could be detrimental to skin. The aim of this study is to develop an alcohol-free niosome gel containing 1% naftifine hydrochloride. Niosomes were prepared and formulation variables were optimized to achieve maximum entrapment coupled with stability. Maximum drug entrapment and niosome stability entailed imparting a negative charge to the vesicles where entrapment efficiency reached 50%. Niosomes were incorporated into a hydroxyethylcellulose gel. The final gel contained a total drug concentration of 1% (wt/wt) half of which was entrapped in the niosomes. The results suggest the potential usefulness of the niosome gel.  相似文献   

4.
Encapsulation of Ganciclovir in lipophilic vesicular structure may be expected to enhance the oral absorption and prolong the existence of the drug in the systemic circulation. So the purpose of the present study was to improve the oral bioavailability of Ganciclovir by preparing nanosized niosomal dispersion. Niosomes were prepared from Span40, Span60, and Cholesterol in the molar ratio of 1:1, 2:1, 3:1, and 3:2 using reverse evaporation method. The developed niosomal dispersions were characterized for entrapment efficiency, size, shape, in vitro drug release, release kinetic study, and in vivo performance. Optimized formulation (NG8; Span60:Cholesterol 3:2 molar ratio) has shown a significantly high encapsulation of Ganciclovir (89±2.13%) with vesicle size of 144±3.47 nm (polydispersity index [PDI]=0.08). The in vitro release study signifies sustained release profile of niosomal dispersions. Release profile of prepared formulations have shown that more than 85.2±0.015% drug was released in 24 h with zero-order release kinetics. The results obtained also revealed that the types of surfactant and Cholesterol content ratio altered the entrapment efficiency, size, and drug release rate from niosomes. In vivo study on rats reveals five-time increment in bioavailability of Ganciclovir after oral administration of optimized formulation (NG8) as compared with tablet. The effective drug concentration (>0.69 μg/mL in plasma) was also maintained for at least 8 h on administration of the niosomal formulation. In conclusion, niosomes can be proposed as a potential oral delivery system for the effective delivery of Ganciclovir.  相似文献   

5.
Vinblastine (VB), as a chemotherapeutic agent, is widely used in treatment of different types of cancer. However, its clinical application is limited due to its low water solubility, side effects, and multidrug resistance. The aim of this study was to increase the therapeutic efficacy of VB using drug delivery systems. For this purpose, a PEGylated niosomal formulation of vinblastine (Pn-VB) was prepared by thin film hydration method and physicochemically characterized. Drug release pattern was performed by dialysis diffusion method. The cytotoxicity of Pn-VB was investigated against murine lung cancer TC-1 cells using MTT assay and its tumor inhibitory effect was evaluated in lung tumor-bearing C57BL/6 mice. Mean particle size, zeta potential, entrapment, and loading efficiency of niosomes were obtained to be about 234.3?±?11.4?nm, -34.6?±?4.2?mV, 99.92?±?1.6%, and 2.673?±?0.30%, respectively. While, the mean particle size and zeta potential for non-PEGylated niosomes were obtained about 212.4?nm and -31.4?mV, respectively. The in vitro release pattern of drug from niosomes showed a sustained release behavior. Pn-VB indicated a significant increase in toxicity against TC-l cells as compared to free VB. In animal model, Pn-VB exhibited stronger tumor inhibitory effect and longer life time in comparison to free VB. In conclusion, Pn-VB showed appropriate stability, high-entrapment efficacy, lower releasing rate, and stronger cytotoxic activity against lung cancer TC-1 cells as compared to free drug. Thus, the Pn-VB could be a promising formulation for delivery of vinblastine to tumor cells with enhanced drug bioavailability and therapeutic efficacy.  相似文献   

6.
Marketed topical gels of the antifungal drug naftifine hydrochloride contain 50% alcohol as cosolvent. Repeated exposure to alcohol could be detrimental to skin. The aim of this study is to develop an alcohol-free niosome gel containing 1% naftifine hydrochloride. Niosomes were prepared and formulation variables were optimized to achieve maximum entrapment coupled with stability. Maximum drug entrapment and niosome stability entailed imparting a negative charge to the vesicles where entrapment efficiency reached 50%. Niosomes were incorporated into a hydroxyethylcellulose gel. The final gel contained a total drug concentration of 1% (wt/wt) half of which was entrapped in the niosomes. The results suggest the potential usefulness of the niosome gel.  相似文献   

7.
《Advanced Powder Technology》2020,31(12):4768-4781
The purpose of this study was to prepare and characterize an optimized system of tannic acid-loaded niosomes as a potential carrier for antibacterial and anti-biofilm delivery. The niosomal formulation was optimized using response surface methodology (RSM). The effects of the molar ratio of surfactant to cholesterol, drug concentration, and molar ratio of Span 60 to Tween 60 on particle size and drug entrapment efficiency of the niosomal nanocarrier were studied. The optimized nanoparticles were characterized in terms of the morphology, in vitro release profile, and antibacterial properties. Moreover, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) techniques were utilized to investigate drug-excipient interactions. Antibacterial and anti-biofilm activities of free tannic acid and tannic acid-loaded niosome were investigated against selected pathogenic bacteria including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Furthermore, the expression level of biofilm-associated genes was evaluated in selected pathogenic bacteria using Real-Time PCR. According to the results, the dependent variables (particle size and entrapment efficiency) were best fitted to the quadratic model. The particle size and entrapment efficiency of the best niosomal formulation were 89 nm and 82%, respectively. The in vitro release of the optimized formulation showed a controlled release profile. Release kinetics indicated a diffusion-based release of the drug. FTIR and DSC studies also confirmed the absence of drug-excipient interactions. The optimized formulation exhibited higher antibacterial effects as compared with the free drug solution. Moreover, the time-kill assay of the encapsulated drug revealed a slow and controlled inhibition of bacterial growth for 72 h while the free drug was used up in the first hours. Moreover, tannic acid-loaded niosome reduced biofilm formation capacity in selected strains and down-regulated the biofilm gene expression as compared to free tannic acid.The optimized formulation containing tannic acid can be a promising candidate for designing a new delivery system for this antibacterial and anti-biofilm agent.  相似文献   

8.
This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8?±?18.69 to 797.7?±?12.45?nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC0-48?hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.  相似文献   

9.
Niosome vesicles of cytarabine hydrochloride were prepared by a lipid hydration method that excluded dicetylphosphate. The sizes of the vesicles obtained ranged from 600 to 1000 nm, with the objective of producing more blood levels in vivo. The study of the release of drug from niosomes exhibited a prolonged release profile as studied over a period of 16 hr. The drug entrapment efficiency was about 80% with Tween 80, Span 60 and Tween 20; for Span 80, it was 67.5%. The physical stability profile of vesicular suspension was good as studied over a period of 4 weeks.  相似文献   

10.
Niosome vesicles of cytarabine hydrochloride were prepared by a lipid hydration method that excluded dicetylphosphate. The sizes of the vesicles obtained ranged from 600 to 1000 nm, with the objective of producing more blood levels in vivo. The study of the release of drug from niosomes exhibited a prolonged release profile as studied over a period of 16 hr. The drug entrapment efficiency was about 80% with Tween 80, Span 60 and Tween 20; for Span 80, it was 67.5%. The physical stability profile of vesicular suspension was good as studied over a period of 4 weeks.  相似文献   

11.
《Advanced Powder Technology》2020,31(9):4064-4071
In this study, a folic acid-functionalized niosome was formulated and loaded with letrozole and curcumin as a promising drug carrier system for chemotherapy of the breast cancer cells. The formulation process was optimized by varying the type of Span 80 and total lipid to drug ratio, where Span 80 and lipid to drug molar ratio of 10 resulted in the niosomes with maximum encapsulation of both drugs but minimum size. The developed niosomal formulation showed a great storage stability up to one month with the small changes in drug encapsulation efficiency and size during the storage. In addition, they showed a pH-dependent release behaviour with slow drug release at physiological pH (7.4) while considerable drug release in acidic conditions (pH = 3), making it a promising candidate for breast cancer treatment. The cytotoxicity study shows the niosomal formulation has high biocompatibility with HEK-293 healthy cells, while having remarkable inhibitory effects on MCF-7 and MDA-MB-231 breast cancer cells due to the presence of folic acid in formulation, and in turn, selective internalization of the as-developed nanocarrier through folate receptor-mediated endocytosis. The double drug-loaded niosomes affect the gene expression by studied breast cancer cell lines; down-regulates the expression of Bcl2, cyclin D, and cyclin E genes while they up-regulate the expression of p53, Bax, caspase-3, and caspase-9 genes. The flow cytometry results showed that letrozole/curcumin-loaded niosomes enhanced the apoptosis rate in both MCF-7 and MDA-MB-231 cells compared to the mixture of letrozole and curcumin, which was due to the synergic effect between the two drugs as well as higher cell uptake by niosomal formulation. The findings of our study show the importance of developing highly biocompatible niosomal formulations in the future of nanomedicine that enables the co-delivery of two hydrophobic drugs into the cancer cells improves the efficiency of chemotherapy due to the synergic effect between the drugs.  相似文献   

12.
Objective: Novel niosomal formulation may be successfully applied to treat a systemic disease such as migraine through transdermal drug delivery system (TDDS), moreover, the treatment of topical diseases such as mycotic infections by targeting and localizing the drug to the stratum corneum. The current study aims to formulate zolmitriptan (Zt) in niosomal vesicles to potentiate its transdermal effect.

Significance: The development of a promising niosomal formulation will push the scaling up of pharmaceutical industry in this field.

Methods: Design- Expert 10 was used to design twelve formulations using Box-Behnken. Zt loaded niosomes were prepared by the thin film hydration method using Span 60(S 60), Span 80(S 80) along with cholesterol(Ch) at three different levels. The optimized formulation (F11) was formulated in Emulgel (1:1 emulsion/gel ratio).

Results: The vesicles revealed vesicle size (VS) ranging from 133.1 to 851.3?nm, zeta potential (ZP) ?43.8 to ?82.8?mV, entrapment efficiency (EE%) from 66.7 to 88.7%, and Zt release after 4?h up to 67%. Optimized niosomal formulation (F11) depicted the smallest VS (133.1?nm), highest EE (88.7%), high ZP (?80.6?mV) and satisfactory release after 4?h (61.5%). There was a significant difference (p <.05) in drug permeation after 8?h for niosomal F11(460.98?ug/cm2) and niosomal F11 loaded Emulgel (336.92?ug/cm2) compared to plain Zt loaded emulgel (160.83?ug/cm2). Niosomal F11 loaded emulgel showed thixotropic behavior of rapid recovery, significant bioavailability and pharmacokinetic parameters as compared to the plain Zt-loaded Emulgel.

Conclusion: Optimized F11 represents a promising formulation for transdermal drug delivery system to treat both topical and systemic diseases.  相似文献   

13.
《Advanced Powder Technology》2021,32(12):4711-4722
In the current study, gold nanoparticles (AuNPs) were prepared using the green synthesis method using Artemisia annua extract, loaded into niosomes, and investigated their cytotoxicity and apoptotic effects. To optimize the niosomal formulation containing AuNPs, the effects of surfactants: cholesterol molar ratio, Span 60: Tween 60 M ratio, and AuNP concentration (µg/mL) were investigated. After examining the drug release profile, mathematical models were assessed to predict release kinetic. The cytotoxicity of noisome encapsulated AuNPs and free AuNPs was evaluated against human ovarian cancer cell line (A2780) by MTT assay. The apoptotic/necrosis ratio was studied using flow cytometry as well as Real-Time PCR was used for the Bax and Bcl-2 apoptosis gene expression. The results showed that the entrapment efficiency and particle size of optimized niosomal formulation encapsulated AuNPs were 34.49%±0.84 and 153.6 ± 4.62 nm with a regular spherical shape, respectively. The release profile of AuNPs from niosomal formulation was 59%±1.0 after 8 h suggesting the controlled release profile. This formulation exerted dose-dependent cytotoxicity against the A2780 cells via induction of apoptosis and significant upregulation of mRNA expression of Bax gene; while expression of anti-apoptotic gene Bcl-2 was down-regulated. Thus, the findings suggest that AuNP-loaded niosomal formulation is considered a promising and suitable targeted system for improving anti-tumor activity against A2780 cells.  相似文献   

14.
Context: Niosomal delivery can prove an alternative to improve the poor skin penetration and residence of the topical antifungal drugs that account for the long treatment regimes in cutaneous mycosis. Objective: To investigate niosomes as carriers for dermal delivery of ciclopirox olamine (CPO), a broad spectrum antifungal drug. Materials and methods: Niosomes were prepared by ethanol injection method using Span 60, cholesterol, diacetyl phosphate according to 32 factorial design and evaluated for physicochemical parameters, in vitro and ex vivo deposition in skin and stability study. Results: Unilamellar CPO niosomes of size 170–280 nm, entrapment efficiency 38–68%, and sufficient electrokinetic stability were obtained. Percent drug deposition in artificial membrane varied from 12.75 to 92.74. Deposition of CPO into rat skin from niosomal dispersion and its gel was significantly higher than that of plain CPO solution and its marketed product. Obtained niosomes possessed sufficient stability on storage. Discussion: Increasing amounts of Span 60 and cholesterol increase the vesicle size probably because of entrapment of CPO-ionized molecules in the aqueous compartment and interaction of its unionized counterpart with the bilayer constituents leading to increase in bilayer thickness. Consequently, the percent entrapment efficiency also increased. However, increasing Span 60 levels decreased the in vitro percent drug deposition. This might be attributed to the larger size of vesicles produced by high amounts of surfactant that showed poor deposition. The optimized batch possessed sufficient stability. Conclusions: The results of this investigation suggest that niosomes are promising tools for cutaneous retention of CPO.  相似文献   

15.
Dermal drug delivery system which localizes methotrexate (MTX) in the skin is advantageous in topical treatment of psoriasis. The aim of the current study was to understand dilution effects and formulation variability for the potential formation of niosomes from proniosome gels of MTX. Box–Behnken’s design was employed to prepare a series of MTX proniosome gels of Span 40, cholesterol (Chol-X1) and Tween 20 (T20-X2). Short chain alcohols (X3), namely ethanol (Et), propylene glycol (Pg) and glycerol (G) were evaluated for their dilution effects on proniosomes. The responses investigated were niosomal vesicles size (Y1), MTX entrapment efficiency percent (EE%-Y2) and zeta potential (Y3). MTX loaded niosomes were formed immediately upon hydration of the proniosome gels with the employed solvents. Addition of Pg resulted in a decrease of vesicular size from 534?nm to 420?nm as Chol percentage increased from 10% to 30%, respectively. In addition, increasing the hydrophilicity of the employed solvents was enhancing the resultant zeta potential. On the other hand, using Et in proniosomal gels would abolish Chol action to increase the zeta potential value and hence less stable niosomal dispersion was formed. The optimized formula of MTX loaded niosomes showed vesicle size of 480?nm, high EE% (55%) and zeta potential of –25.5?mV, at Chol and T20 concentrations of 30% and 23.6%, respectively, when G was employed as the solvent. Hence, G was the solvent of choice to prepare MTX proniosomal gels with a maintained stability and highest entrapment.  相似文献   

16.
Context: Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs.

Objectives: This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability.

Methods: Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug–excipient interaction using zetasizer, atomic force microscope (AFM), LC–MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits.

Results: The vesicles were spherical with 247?±?4.67?nm diameter hosting 73.29?±?3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80?±?0.51% hemolysis at 1000?µg/mL. It was also found safe in mice up to 2.5?g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits.

Conclusions: The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.  相似文献   

17.
Clotrimazole, which is an imidazole derivative antifungal agent, was widely used for the treatment of mycotic infections of the genitourinary tract. To develop alternative formulation for the vaginal administration of clotrimazole to provide sustained and controlled release of appropriate drug for local vaginal therapy, liposomes/niosomes were evaluated as delivery vehicles. To optimize the preparation of liposomes/niosomes with regard to size and entrapment efficiency, multilamellar liposomes/niosomes containing drug were prepared by lipid hydration method. The prepared liposomes/niosomes were incorporated into 2% carbopol gel, and the systems were evaluated for drug stability in phosphate-buffered saline (pH 7.4) and simulated vaginal fluid at 37 ± 1°C. Further, the vesicle gel system was evaluated by antifungal activity and tolerability on tissue level in rat.  相似文献   

18.
Clotrimazole, which is an imidazole derivative antifungal agent, was widely used for the treatment of mycotic infections of the genitourinary tract. To develop alternative formulation for the vaginal administration of clotrimazole to provide sustained and controlled release of appropriate drug for local vaginal therapy, liposomes/niosomes were evaluated as delivery vehicles. To optimize the preparation of liposomes/niosomes with regard to size and entrapment efficiency, multilamellar liposomes/niosomes containing drug were prepared by lipid hydration method. The prepared liposomes/niosomes were incorporated into 2% carbopol gel, and the systems were evaluated for drug stability in phosphate-buffered saline (pH 7.4) and simulated vaginal fluid at 37 +/- 1 degrees C. Further, the vesicle gel system was evaluated by antifungal activity and tolerability on tissue level in rat.  相似文献   

19.
Clotrimazole, which is an imidazole derivative antifungal agent, was widely used for the treatment of mycotic infections of the genitourinary tract. To develop alternative formulation for the vaginal administration of clotrimazole to provide sustained and controlled release of appropriate drug for local vaginal therapy, liposomes/niosomes were evaluated as delivery vehicles. To optimize the preparation of liposomes/niosomes with regard to size and entrapment efficiency, multilamellar liposomes/niosomes containing drug were prepared by lipid hydration method. The prepared liposomes/niosomes were incorporated into 2% carbopol gel, and the systems were evaluated for drug stability in phosphate-buffered saline (pH 7.4) and simulated vaginal fluid at 37 ± 1°C. Further, the vesicle gel system was evaluated by antifungal activity and tolerability on tissue level in rat.  相似文献   

20.
Objectives: This study was aimed to develop dual-purpose natamycin (NAT)-loaded niosomes in ketorolac tromethamine (KT) gels topical ocular drug delivery system to improve the clinical efficacy of natamycin through enhancing its penetration through corneal tissue and reducing inflammation associated with Fungal keratitis (FK).

Significance: Nanosized carrier systems, as niosomes would provide great potential for improving NAT ocular bioavailability.NAT niosomal dispersion formulae were prepared and then incorporated in 0.5%KT gels using different mucoadhesive viscosifying polymers.

Methods: Niosomes were prepared using the reverse-phase evaporation technique. In vitro experimental, and in vivo clinical evaluations for these formulations were done for assessment of their safety and efficacy for treatment of Candida Keratitis in Rabbits. In vitro release study was carried out by the dialysis method. In vivo and histopathological studies were performed on albino rabbits.

Results: NAT niosomes exhibited high entrapment efficiency percentage (E.E%) up to96.43% and particle size diameter ranging from 181.75?±?0.64 to 498.95?±?0.64?nm, with negatively charged zeta potential (ZP). NAT niosomal dispersion exhibited prolonged in vitro drug release (40.96–77.49% over 24h). NAT-loaded niosomes/0.5%KT gel formulae revealed retardation in vitro release, compared to marketed-product (NATACYN®) and NAT-loaded niosomes up to57.32% (F8). In vivo experimental studies showed the superiority for F8 in treatment of candida keratitis and better results on corneal infiltration and hypopyon level. These results were consistent with histopathological examination in comparison with F5 and combined marketed products (NATACYN® and Ketoroline®).

Conclusions: This study showed that F8 has the best results from all pharmaceutical in vitro evaluations and a better cure percent in experimental application and enhancing the prolonged delivery of NAT and penetrating the cornea tissues.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号