首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的为改善高蛋白营养棒的储藏稳定性,研究了乳蛋白预涂油膜对营养棒硬化及色变的改善效果,并探讨了可能的机制。方法将高蛋白营养棒分为对照组和预涂层组,两组都放于37℃恒温箱中储存35 d,定期取出样品,并对其硬度、色差、有效赖氨酸、游离巯基进行监测及电泳分析蛋白变化。结果相对于对照组样品,预涂层营养棒储存35 d后硬度增加及亮度降低分别减少了24.14%和11.55%,尤其储藏初期,硬化速度明显低于对照组(P0.05)。游离巯基保留率显著高于对照组12.11%(P0.05),表明蛋白质间分子交联程度弱。对于有效赖氨酸保留率,预涂层组亦明显高于对照组5.21%(P0.05),表明其美拉德反应部分受到抑制,因此产品颜色保持较好,此外因美拉德反应引起的蛋白聚合、棒硬化得以改善。结论蛋白预涂油层对于改善高蛋白营养棒储存质量是有效的,其机制可能是通过减缓蛋白之间的交联及蛋白与还原糖之间的美拉德反应来实现的。  相似文献   

2.
Milk proteins undergo chemical changes such as lactosylation, deamidation and protein cross-linking during processing and storage of milk products. A proteomic technique combining two-dimensional gel electrophoresis and mass spectrometry was used to investigate chemical modifications to proteins, in milk protein concentrate (MPC80), during storage. Lactosylation, deamidation and protein cross-linking were observed on 2-DE gels. They were storage temperature-, humidity- and time-dependent. Lactosylated whey proteins were well separated on 2-DE in vertical stacks of spots. The masses of the spots varied by multiples of 324, indicating the attachment of lactose to lysine residues in the proteins. The trypsin-digested spots of α-lactalbumin were analysed by MALDI-TOF mass spectrometry, which indicated multiple lactosylation sites. The lactose adducts on gels were quantified by image analysis, allowing development of adducts over time to be monitored. The results show that proteomics can be used for the detection and quantification of chemical modifications to proteins in stored MPC80.  相似文献   

3.
Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding αS1- and αS2-casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels.  相似文献   

4.
This study investigated the effect of storage temperature (20–50 °C) and time (0–60 days) on the renneting properties of milk protein concentrate with 85% protein (MPC85). Reconstituted skim milk was fortified with the MPC85 (2.5% w/w) and the renneting properties of the skim milk/MPC85 systems were investigated using rheology. It was found that the final complex modulus (final G∗) and the yield stress of the rennet-induced skim milk/MPC85 gels decreased exponentially with storage time of the MPC85 for storage temperatures greater than 20 °C, with a greater effect at the higher storage temperatures. Changes in the solubility of MPC85 with storage time were correlated with the rheological properties. The primary phase of renneting (cleavage of κ-casein) was not affected by the storage of the MPC85; hence the effect was related to the secondary stage of renneting (aggregation/coagulation of rennet-treated casein micelles). Using a temperature–time superposition method, a master curve was formed from the final G∗, yield stress and solubility results. This suggested that the same physical processes affected the solubility and rennet gelation properties of the milks. It is proposed that the MPC85 protein in rennet-treated skim milk/MPC85 solutions may transform from an interacting material, when solubility is high, to an inert or weakly interacting material, when solubility is low, and that this results in the reduced final G∗ and yield stress of the rennet gels when MPC85 is stored at elevated temperatures for long periods.  相似文献   

5.
Because of their high protein and low lactose content, milk protein concentrates (MPC) are typically used in the formulation of ready-to-drink beverages. Calcium-mediated aggregation of proteins during storage is one of the main reasons for loss of storage stability of these beverages. Control and calcium-reduced MPC [20% calcium-reduced (MPC-20) and 30% calcium-reduced (MPC-30)] were used to evaluate the physicochemical properties in this study. This study was conducted in 2 phases. In phase I, 8% protein solutions were prepared by reconstituting the 3 MPC and adjusting the pH to 7. These solutions were divided into 3 equal parts, 0, 0.15, or 0.25% sodium hexametaphosphate (SHMP) was added, and the solutions were homogenized. In phase II, enteral dairy beverage formulations containing MPC and a mixture of gums, maltodextrin, and sugar were evaluated following the same procedure used in phase I. In both phases, heat stability, apparent viscosity, and particle size were compared before and after heat treatment at 140°C for 15 s. In the absence of SHMP, MPC-20 and MPC-30 exhibited the highest heat coagulation time at 30.9 and 32.8 min, respectively, compared with the control (20.9 min). In phase II, without any addition of SHMP, MPC-20 exhibited the highest heat coagulation time of 9.3 min compared with 7.1 min for control and 6.2 min for MPC-30. An increase in apparent viscosity and a decrease in particle size of reconstituted MPC solutions in phases I and II with an increase in SHMP concentration was attributed to casein micelle dissociation caused by calcium chelation. This study highlights the potential for application of calcium-reduced MPC in dairy-based ready-to-drink and enteral nutrition beverage formulations to improve their heat stability.  相似文献   

6.
Commercial milk protein concentrate (MPC) was used to standardize whole milk for reduced-fat Cheddar cheesemaking. Four replicate cheesemaking trials of three treatments (control, MPC1, and MPC2) were conducted. The control cheese (CC) was made from standardized milk (casein-to-fat ratio, C/F approximately 1.7) obtained by mixing skim milk and whole milk (WM); MPC1 and MPC2 cheeses were made from standardized milk (C/F approximately 1.8) obtained from mixing WM and MPC, except that commercial mesophilic starter was added at the rate of 1% to the CC and MPC1 and 2% to MPC2 vats. The addition of MPC doubled cheese yields and had insignificant effects on fat recoveries (approximately 94% in MPC1 and MPC2 vs. approximately 92% in CC) but increased significantly total solids recoveries (approximately 63% in CC vs. 63% in MPC1 and MPC2). Although minor differences were noted in the gross composition of the cheeses, both MPC1 and MPC2 cheeses had lower lactose contents (0.25 or 0.32%, respectively) than in CC (0.60%) 7 d post manufacture. Cheeses from all three treatments had approximately 10(9) cfu/g initial starter bacteria count. The nonstarter lactic acid bacteria (NSLAB) grew slowly in MPC1 and MPC2 cheeses during ripening compared to CC, and at the end of 6 mo of ripening, numbers of NSLAB in the CC were 1 to 2 log cycles higher than in MPC1 and MPC2 cheeses. Primary proteolysis, as noted by water-soluble N contents, was markedly slower in MPC1 and MPC2 cheeses compared to CC. The concentrations of total free amino acids were in decreasing order CC > MPC2 > MPC1 cheeses, suggesting slower secondary proteolysis in the MPC cheeses than in CC. Sensory analysis showed that MPC cheeses had lower brothy and bitter scores than CC. Increasing the amount of starter bacteria improved maturity in MPC cheese.  相似文献   

7.
We explored the foaming behavior of the two main types of milk proteins: flexible caseins and globular whey proteins. Direct foam comparison was complemented with measurements in model experiments such as thin foam films, dynamic surface tension, and protein adsorption. Foaming was studied as a function of pH (from below to above isoelectric point, pI) and range of ionic strengths. Maximum foamability was observed near pI ≈ 4.2 for WPC in contrast to sodium caseinate which had minimum foaming near pI = 4.6. Good foamability behavior correlated well with an increased adsorption, faster dynamic surface tension decrease and increased film lifetime. Differences in the stability of the foams and foam were explained with the different molecular structure and different aggregation behavior of the two protein types. Far from its isoelectric pI, casein adsorption layers are denser and thicker thus ensuring better stabilization. Added electrolyte increased further the adsorption and the repulsion between the surfaces (probably by steric and/or osmotic mechanism). In contrast the globular molecules of WPC probably could not compact well to ensure the necessary films and foams stabilization far from pI, even after electrolyte addition.  相似文献   

8.
《Journal of dairy science》2022,105(5):3911-3925
Micro- and nano-bubbles (MNB) have unique properties and have attracted great attention in the past 2 decades, offering prospective applications in various disciplines. The first objective of this study was to investigate whether venturi-style MNB generation is capable of producing sufficient bulk MNB. A nanoparticle tracking system was used to measure the bubble concentration and particle size of MNB-treated deionized water. The MNB-treated deionized water had a bubble concentration of 3.76 × 108 particles/mL (~350 million bubbles/mL more compared with control) and a mean particle size of 249.8 nm. The second objective of this study was to investigate the effects of MNB treatment on the microstructure and functional properties of milk protein concentrate (MPC) dispersions. Reconstituted MPC dispersions (21%, wt/wt) without air injection were considered as control (C-MPC), and MPC dispersions passed through the MNB system were considered as MNB-treated (MNB-MPC) dispersions. Control and MNB-MPC dispersions were evaluated in terms of rheological behavior and microstructure. The microscopic observations of MNB-MPC dispersions showed less aggregated microstructures and greater structural differences compared with C-MPC dispersions, therefore lowering the viscosity. The viscosity of MNB-MPC at a shear rate of 100 s?1 significantly decreased to 57.58 mPa·s (C-MPC: 162.40 mPa·s), a net decrease in viscosity by ~65% after MNB treatment. Additionally, MPC dispersions were spray dried after the MNB treatment, and the resultant MNB-MPC powders were characterized and compared with the control MPC in terms of rehydration characteristics and microstructure. Focused beam reflectance measurement of the MNB-MPC powders indicated lower counts of large particles (150–300 μm) during dissolution, signifying that MNB-MPC powders exhibited better rehydration properties than the C-MPC powders. This study, therefore, recommends the possibility of using MNB treatment for more efficient drying while improving the functional properties of the resultant MPC powders.  相似文献   

9.
This study investigated casein-whey protein interactions in high-protein milk dispersions (5% protein wt/wt) during heating at 90°C for 1.5 to 7.5 min at 3 different pH of 6.5, 6.8, and 7.0, using both conventional methods (gel electrophoresis, physicochemical properties) and fluorescence spectroscopy. Conventional methods confirmed the presence of milk protein aggregates during heating, similar to skim milk. These methods were able to help in understanding the denaturation and aggregation of milk proteins as a function of heat treatment. However, the results from the conventional methods were greatly affected by batch-to-batch variations and, therefore, differentiation could be drawn only in nonheated samples and samples heated for a longer duration. The front-face fluorescence spectroscopy was found to be a useful tool that provided additional information to conventional methods and helped in understanding differences between nonheated, low-, and high-heated samples, along with the type of sample used (derived from liquid or powder milk protein concentrates). At all pH values, tryptophan maxima in nonheated samples derived from powdered milk protein concentrates presented a blue shift in comparison to samples derived from liquid milk protein concentrates, and tryptophan maxima in heated samples presented a red shift. With the heating of the sample, Maillard emission and excitation spectra also showed increases in the peak intensities from 408 to 432 and 260 to 290 nm, respectively. As the level of denaturation increased with heating, a marked differentiation can be seen in the principal component analysis plots of tryptophan, Maillard emission, and excitation spectra, indicating that the front-face fluorescence technique has a potential to monitor and classify samples according to milk protein interactions as a function of pH and heat exposure. Overall, it can be said that the pattern of protein-protein interactions in high-protein dispersions was similar to the observation reported in skim milk systems, and fluorescence spectroscopy with chemometrics can be used as a rapid, nondestructive, and complementary method to conventional methods for following heat-induced changes.  相似文献   

10.
Milk protein concentrate 80 (MPC80) was prepared with different emulsifying salts (ES). The effects on particle size (D50), solubility, and surface hydrophobicity (H0) of MPC80 were then observed after production. The molecular weight and secondary structure of MPC80 protein were also investigated through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier Transform Infrared (FTIR) spectrometry. Particle size (D50) was reduced from 31.37 to 20.67 μm following the addition of sodium phosphate (SPS). The solubility of MPC80 fortified with sodium citrate salt (SCS), SPS, and sodium pyrophosphate (SPP) was improved by 80.32, 78.23, and 55.80%, respectively. The SDS-PAGE pattern showed no significant difference between the control and single-ES-fortified samples, but major protein bands (αs-CN, β-CN, κ-CN, BSA, and β-LG) had a stronger intensity than binary-ES-fortified MPC80. The FTIR results showed that the β-sheet content of ES-fortified MPC80 was relatively higher than that in the control. Compared with analogue cheeses made by MPC80 with and without ES, SCS–SPP (92:8)-modified MPC80 presented a better fluid mass and homogeneous colour.  相似文献   

11.
Optimizing protein intake for very low birth weight (<1,500 g) infants is fundamental to prevent faltering postnatal growth with the potential association of impaired neurodevelopment. The protein content of human milk is not sufficient to support the growth of very low birth weight infants. To meet their elevated protein requirements, human milk is currently fortified using typically bovine milk-based protein isolates (>85% on a dry basis). However, these products have several limitations for use in this vulnerable population. To overcome the shortcomings of bovine milk-based protein supplement, a human milk protein concentrate (HMPC) was developed. In preliminary attempts using 10 kDa ultrafiltration (UF) membranes, it was not possible to reach the protein content of commercial protein isolates, presumably due to the retention of human milk oligosaccharides (HMO). Consequently, it was hypothesized that the use of a UF membrane with a higher molecular weight cut-off (50 kDa rather than 10 kDa) could improve the transmission of carbohydrates, including HMO, in the permeate, thus increasing the protein purity of the subsequent HMPC. The results showed that permeate fluxes during the concentration step were similar to either UF molecular weight cut-off, but the 50-kDa membrane had a higher permeate flux during the diafiltration sequence. However, it was not sufficient to increase the protein purity of the human milk retentate, as both membranes generated HMPC with similar protein contents of 48.8% (10 kDa) and 50% (50 kDa) on a dry basis. This result was related to the high retention of HMO, mainly during the concentration step, although the diafiltration step was efficient to decrease their content in the HMPC. As the major bioactive proteins (lactoferrin, lysozyme, bile salt stimulated lipase, and α1-antitrypsin) in human milk were detected in both HMPC, the 50-kDa membrane seems the most appropriate to the preparation of HMPC in terms of permeation flux values. However, improving the separation of HMO from proteins is essential to increase the protein purity of HMPC.  相似文献   

12.
This study aimed to evaluate the effects of different concentration methods (nanofiltration and evaporation) and heat treatments on the gel properties of milk protein concentrate (MPC). The MPC gels were produced using glucono-δ-lactone (GDL) as an acidifier with different preheat treatments (30 min at 80°C and 5 min at 92°C). We then evaluated the effect of preheat treatments on MPC gel properties, including storage modulus (G′), loss tangent (tan δ), firmness, whey separation, and microstructure. The results indicated that without preheating, evaporation (EP)-MPC had higher G′ and firmness, and lower tan δ and whey separation than nanofiltration (NF)-MPC. These results suggest that EP-MPC produced a better acid-induced gel than NF-MPC when no preheat treatments were performed. After preheating, however, except for a very small difference in the final G′ (EP-MPC was higher), the 2 MPC did not differ significantly in firmness, final tan δ, or whey separation. Additionally, compared with the gel of unheated MPC, both preheat-treated gels (NF-MPC and EP-MPC) achieved increased G′ and firmness and decreased tan δ and whey separation. The preheat-treated MPC also displayed a more flexible-stranded network. These findings demonstrate that, given a suitable heating treatment, NF-MPC compares favorably with EP-MPC in achieving desired gel properties.  相似文献   

13.
A limiting factor in using milk protein concentrates (MPC) as a high-quality protein source for different food applications is their poor reconstitutability. Solubilization of colloidal calcium phosphate (CCP) from casein micelles during membrane filtration (e.g., through acidification) may affect the structural organization of these protein particles and consequently the rehydration and functional properties of the resulting MPC powder. The main objective of this study was to investigate the effects of acidification of milk by glucono-δ-lactone (GDL) before ultrafiltration (UF) on the composition, physical properties, solubility, and thermal stability (after reconstitution) of MPC powders. The MPC samples were manufactured in duplicate, either by UF (65% protein, MPC65) or by UF followed by diafiltration (80% protein, MPC80), using pasteurized skim milk, at either the native milk pH (~pH 6.6) or at pH 6.0 after addition of GDL, followed by spray drying. Samples of different treatments were reconstituted at 5% (wt/wt) protein to compare their solubility and thermal stability. Powders were tested in duplicate for basic composition, calcium content, reconstitutability, particle size, particle density, and microstructure. Acidification of milk did not have any significant effect on the proximate composition, particle size, particle density, or surface morphology of the MPC powders; however, the total calcium content of MPC80 decreased significantly with acidification (from 1.84 ± 0.03 to 1.59 ± 0.03 g/100 g of powder). Calcium-depleted MPC80 powders were also more soluble than the control powders. Diafiltered dispersions were significantly less heat stable (at 120°C) than UF samples when dissolved at 5% solids. The present work contributes to a better understanding of the differences in MPC commonly observed during processing.  相似文献   

14.
In this work we have studied the interactions between a commercial whey protein concentrate (WPC) and two anionic polysaccharides (sodium alginate, SA, and λ-carrageenan, λ-C) in the aqueous phase. The concentration of WPC at 1.0% and the pH 7.0 of the aqueous phase were maintained constant, while polysaccharides (PS) were evaluated within a 0.0–1.0% concentration range. Interactions between WPC and PS in the aqueous phase were analysed by fluorescence spectroscopy, absorption spectroscopy in the presence of methylene blue (MB), and confocal laser scanning microscopy. The results from these methodologies revealed differences in the molecular dynamics of mixed systems. The nature of the interactions between WPC and PS depended on the PS type, its relative concentration in the aqueous phase and also on the two WPC fractions. Whey protein concentrate/sodium alginate (WPC/SA) mixed systems were distinguished by a tendency to protein aggregation in the aqueous phase and their segregation into separated microdomains. On the other hand, WPC/λ-carrageenan (WPC/λ-C) mixed systems showed a high degree of attractive interactions over the whole range of concentrations. The ultrastructure revealed the existence of hybrid macromolecular entities (biopolymer network). Interaction of WPC and polysaccharide in the aqueous phase has an effect on the adsorption of mixed systems at the air–water interface and on their foaming characteristics.  相似文献   

15.
Lipid and protein structural characteristics of frankfurter formulated with olive oil-in-water emulsion stabilized with soy protein isolate (SPI) as pork backfat replacer were investigated using Fourier transform infrared spectroscopy (FT-IR). Proximate composition and textural properties were also evaluated. Different frankfurters were reformulated: F/PF with pork backfat, F/SPI with oil-in-water emulsion stabilized with SPI and F/SPI + SC + MTG with emulsion stabilized with a combination of SPI, sodium caseinate (SC) and microbial transglutaminase (MTG). Replacement of pork backfat with these emulsions produced an increase (P < 0.05) of hardness, springiness, cohesiveness and chewiness but a reduction (P < 0.05) of adhesiveness. F/SPI and F/SPI + SC + MTG frankfurters showed the lowest (P < 0.05) half-bandwidth in the 2922 cm−1 band, which could be related to lipid chains were more ordered than in F/PF. Modifications in the amide I band profile revealed a higher concentration of aggregated intermolecular β-sheets in F/SPI + SC + MTG samples. Lipid and protein structural characteristics could be associated with specific textural properties of healthier frankfurters.  相似文献   

16.
Milk protein hydrolysate was optimally prepared by Protamex and PaproA (MP-PP) exhibiting excellent angiotensin I-converting enzyme (ACE) inhibitory activity (89.6%) at 0.5 mg/mL and protein recovery rate (79.0%). Meanwhile, MP-PP was stable for acid–base and heat treatments, and even presented 80.5% of ACE inhibitory activity after handling in gastrointestinal fluids. However, transepithelial transportation via Caco-2 cell monolayer lowered ACE inhibition of MP-PP. Following the fractionation of MP-PP, IESPPEI was identified as an outstanding ACE inhibitory peptide (IC50 of 6.4 μM), comparable with commercial VPP and IPP. Overall, MP-PP and IESPPEI are potential functional ingredients to develop antihypertensive products.  相似文献   

17.
Ten commercial samples of dry dairy products used for protein fortification in a low fat yoghurt model system at industrial scale were studied. The products employed were whey protein concentratres, milk protein concentrates, skimmed milk concentrates and skimmed milk powder which originated from different countries. The gross chemical composition of these dried products were determined, including polyacrylamide gel electrophoresis (SDS‐PAGE) and isoelectric focusing of the proteins, and minerals such as Na, Ca, K and Mg. Yoghurts were formulated using a skim milk concentrated as a milk base enriched with different dry dairy products up to a 43 g kg−1 protein content. Replacement percentage of skim milk concentrated by dry dairy products in the mix was between 1.49 and 3.77%. Yoghurts enriched with milk protein concentrates did not show significantly different viscosity (35.12 Pa s) and syneresis index (591.4 g kg−1) than the two control yoghurts obtained only from skimmed milk concentrates (35.6 Pa s and 565.7 g kg−1) and skimmed milk powder (32.77 Pa s and 551.5 g kg−1), respectively. Yoghurt fortified with the whey protein concentrates, however, was less firm (22.59 Pa s) and had less syneresis index (216 g kg−1) than control yoghurts. Therefore, whey protein concentrates may be useful for drinking yoghurt production. © 1999 Society of Chemical Industry  相似文献   

18.
Disruption of fat globules upon homogenisation provokes a reduction of their size and a concomitant increase in their specific surface area. In order to overcome this phenomenon, the milk fat globule membrane (MFGM) adsorbs non-native MFGM proteins. The aim of the present study was to examine the effects of UHPH conditions (temperature and pressure) on the milk fat globule and the surface proteins by comparison with conventional treatments applied in the dairy industry. Transmission electron microscopy and SDS-PAGE revealed major differences. In UHPH-treated milk, casein micelles were found to be adsorbed on the MFGM in a lesser extent than in conventional homogenisation–pasteurisation. However, greater adsorption of directly bonded casein molecules, released by UHPH through the partial disruption of casein micelles, was observed especially at high UHPH pressures. Adsorption of whey proteins on the MFGM of conventionally homogenised–pasteurised milk was mainly through intermolecular disulfide bonds with MFGM material, whereas in UHPH-treated milk, disulfide bonding with both indirectly and directly adsorbed caseins was also involved.  相似文献   

19.
Dried shrimp is a high-value fishery product of Thailand. Boiling shrimp in salt solution is an important step during the production of dried shrimp and affects significantly the quality of dried shrimp. However, not much information is so far available on the effects of various boiling parameters on the quality changes of shrimp, especially in terms of the changes of shrimp protein compositions and their consequences on microstructural and physical changes of shrimp. The present work was thus aimed at studying the effects of boiling time and concentration of salt solution on the protein fractions, microstructural and physical changes of boiled shrimp. In addition, the relationships between protein compositions, cooking loss, texture and microstructure of shrimp were established using coupled image and fractal analysis. Boiling was investigated at various concentrations of salt solution and boiling times. Boiled shrimp was then evaluated in terms of its protein fractions, microstructure in terms of fractal dimension and physical changes (cooking loss and hardness). The relationships between all studied parameters were monitored and simple correlations between them were determined. The changes of cooking loss, hardness as well as the normalized changes of fractal dimension (ΔFD/FD0) highly correlated with the changes of protein compositions of shrimp.  相似文献   

20.
The aim of this research was to evaluate the effect of the addition of whey protein concentrate (WPC) on the viability of Lactobacillus acidophilus and Bifidobacterium longum and on postacidification throughout the shelf life of fat-free yogurts, and also to analyse the sensory characteristics of the products. Postacidification was not significantly changed by the addition of WPC, but was decreased by Lactobacillus bulgaricus inoculation. WPC did not influence the viability of the lactic acid bacteria ( L. bulgaricus and Streptococcus thermophilus ), but it improved the growth and survival of the micro-organisms L. acidophilus and B. longum , especially the former. The panellists did not identify significant differences ( P <  0.05) of the yogurts due to the addition of WPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号