首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对最小熵解卷积(MED)降噪效果受滤波器长度影响问题,提出一种利用步长迭代算法和包络谱熵检验准则的自适应MED降噪方法,并结合经验模态分解(EMD)提取滚动轴承微弱故障特征。首先利用自适应MED降噪方法对原信号进行最优降噪处理,然后通过EMD将降噪信号分解为若干个本征模函数(IMF)分量,再选取峭度值最大的IMF进行包络谱分析,根据包络谱中故障特征频率实现故障诊断。仿真信号和实测信号分析结果表明其优于基于EMD的包络解调方法。  相似文献   

2.
在强背景噪声干扰下,快速峭度图提取滚动轴承微弱信号故障的特征效果并不明显。将迭代滤波(Iterative Filtering,IF)和快速峭度图相结合用于滚动轴承的微弱故障特征提取。滚动轴承故障振动信号通过迭代滤波进行自适应分解得到一组内禀模态分量,用迭代滤波对强噪声滚动轴承信号进行降噪处理,用快速峭度图构造最优带通滤波器,将滤波后信号的包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。通过仿真和试验验证了所述方法的有效性及优点。  相似文献   

3.
为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,该方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。  相似文献   

4.
针对强背景噪声环境下齿轮箱故障特征信号往往被噪声淹没等问题,提出最小熵反褶积(Minimum entropy deconvolution,MED)和循环域解调的方法提取齿轮箱故障特征。通过仿真信号发现循环自相关函数解调在强背景噪声下不具有免疫性,为了剔除噪声的干扰,提取故障特征信息,先用MED作为滤波器,以最大峭度值作为滤波的终止条件,通过仿真信号验证其强大的降噪功能,同时用提出的方法对强背景噪声下的齿轮箱多故障试验台振动信号进行降噪处理,对降噪后的信号进行循环自相关函数解调分析,成功提取出故障特征,验证此方法的可靠性。  相似文献   

5.
针对Teager能量算子在解调滚动轴承早期微弱故障特征中的不足,提出一种最大相关峭度解卷积降噪与Teager能量算子解调相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的峭度最大化为目标对原信号进行降噪处理、检测信号中的周期性冲击成分,然后利用Teager能量算子增强降噪信号中的周期性冲击特征、抑制非冲击成分,最后通过分析Teager能量谱中明显的频率成分来诊断故障类型。滚动轴承外圈、内圈故障诊断实例表明,该方法能有效实现滚动轴承早期微弱故障的识别。  相似文献   

6.
采用滚动轴承的声学信号进行状态监测及故障诊断时,环境噪声、传递路径以及其它设备噪声会严重干扰目标信息的提取。针对这一问题,提出一种基于最大相关峭度解卷积和快速谱峭度图的滚动轴承声信号故障特征增强方法。该方法首先利用最大相关峭度解卷积算法对滚动轴承声信号进行解卷积,增强信号中每旋转一周时出现的脉冲信号,削弱噪声信号;然后将谱峭度作为指标,利用快速谱峭度对信号进行滤波分析,获得包含轴承故障信息最丰富的频带;最后对该频带进行包络提取特征频率。仿真及实验结果表明,相较于传统的包络解调,该方法在滚动轴承声信号故障特征提取方面具有更好的降噪性能和故障特征增强效果。  相似文献   

7.
滚动轴承振动信号往往信噪比较低,且具有较强的非高斯噪声,如何选择合适的解调频带一直是故障诊断的难点。自相关谱峭度图(Autogram)是新提出的一种最优频带选择方法,通过计算解调信号的平方包络的无偏自相关的峭度,能够有效地检测到解调频带及其故障频率;但此方法易受到噪声干扰,故障特征识别不明显;基于此,提出了一种基于最小熵解卷积(MED)与Autogram的滚动轴承故障诊断方法;该方法通过MED去除噪声,在得到最佳频带的同时,能够有效地突显故障特征。通过分析仿真信号及实验数据,将所提方法与快速谱峭度及现有方法进行了对比,结果表明,所提故障诊断方法能够准确地检测到解调频带及故障频率,突出故障特征和提高故障检测效果。  相似文献   

8.
针对滚动轴承早期故障特征提取困难的问题,本文提出一种LMS(Least Mean Square,LMS)算法降噪、Fast-Kurtogram选频和共振解调技术相结合的滚动轴承故障诊断方法。首先对采集到的信号进行自适应降噪,减弱背景噪声的影响;然后利用谱峭度值对故障信号中瞬态成分敏感的特性,通过计算降噪后信号的快速峭度图,确定滤波器最优频带中心和带宽;最后进行共振包络解调提取出滚动轴承早期故障特征。通过仿真和实验验证分析,验证了该方法在滚动轴承早期故障诊断中的适用性和有效性。  相似文献   

9.
针对传输路径复杂和强噪声干扰条件下滚动轴承故障信号信噪比低、微弱故障特征难以提取的问题,提出一种将参数优化变分模态分解(Variational Mode Decomposition,VMD)与最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution, MCKD)相结合的滚动轴承微弱故障特征提取方法。首先,利用经麻雀搜索算法(Sparrow Search Algorithm, SSA)优化的VMD对故障信号进行自适应分解,构建加权峭度指标以筛选有效模态分量;然后对有效模态分量利用经SSA优化后的MCKD进行增强;最后,对增强后的信号进行包络解调分析,提取出轴承故障特征频率。实验和工程实际案例分析表明,所提出的方法能够自适应增强轴承信号中的微弱冲击成分,有效提取出强噪声背景下的滚动轴承微弱故障特征。  相似文献   

10.
针对滚动轴承早期故障特征提取困难的问题,本文提出一种LMS(Least Mean Square,LMS)算法降噪、Fast-Kurtogram选频和共振解调技术相结合的滚动轴承故障诊断方法。首先对采集到的信号进行自适应降噪,减弱背景噪声的影响;然后利用谱峭度值对故障信号中瞬态成分敏感的特性,通过计算降噪后信号的快速峭度图,确定滤波器最优频带中心和带宽;最后进行共振包络解调提取出滚动轴承早期故障特征。通过仿真和实验验证分析,验证了该方法在滚动轴承早期故障诊断中的适用性和有效性。  相似文献   

11.
如何从含噪振动信号中准确提取微弱周期性故障特征是辨识滚动轴承局部故障的关键。针对此问题,提出一种基于二次聚类分割与Teager能量谱的滚动轴承微弱故障特征提取方法。首先通过傅里叶变换得到故障信号的频谱并利用模糊C均值算法对其进行聚类分割;然后对每个频段进行傅里叶逆变换并计算不同频段时域信号的峭度,选取峭度最大频段对应的时域信号作为滤波信号,对该信号进行第二次聚类分割及傅里叶逆变换,选取最大峭度对应的频段作为通带过滤信号,进一步消除噪声和自然周期性成分的影响;最后采用Teager能量算子对得到的时域故障信号进行解调分析,以获取滚动轴承微弱故障特征频率。仿真分析和实验验证结果表明,该方法能准确有效地提取出滚动轴承微弱故障特征。  相似文献   

12.
针对滚动轴承早期故障信息微弱,频率切片小波变换(FSWT)在强背景噪声中提取故障特征的不足,提出变分模态分解(VMD)奇异值分解(SVD)联合降噪与FSWT相结合的故障特征提取方法,首先利用VMD故障信号自适应分解为若干本征模态分量(IMF),通过峭度准则选择包含故障信息最丰富的IMF进行信号重构,其次利用SVD对重构信号进行再次降噪,提高信噪比。最后对降噪信号进行FSWT,凸显故障信号的时频分布信息提取故障特征。仿真信号和实际数据分析结果表明,该方法有效消除了噪声的影响,能够清晰提取故障信号的特征频率,实现滚动轴承故障的精准识别。  相似文献   

13.
针对滚动轴承早期故障特征非常微弱,易受随机噪声和其他信号干扰而难以提取等现象,提出了用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和变分模态分解(Variational Mode Decomposition,VMD)相结合的方法提取滚动轴承故障特征。首先用MCKD进行信号增强,然后利用VMD得到一系列模态,应用互相关系数和峭度准则筛选包含故障信息较为丰富的模态进行重构降噪,最后对重构信号进行包络解调提取故障特征。通过仿真分析和轴承故障模拟实验验证了该方法的有效性,可以精确地分离轴承故障振动信号的不同频率成分。  相似文献   

14.
针对滚动轴承早期故障信号存在大量噪声使得提取故障特征困难的问题,提出了一种基于新改进小波阈值的降噪方法。该方法是通过采用互补集合经验模态分解(CEEMD)方法将原始故障信号进行分解,得出各阶本征模态函数(IMF)分量;选取关键的IMF分量进行重构信号,将重构信号经过新改进小波阈值算法和快速谱峭度进行滤波降噪;进行Hilbert包络解调,得出滚动轴承的故障特征频率。分别用仿真噪声信号和滚动轴承的实验信号对该方法进行验证,并将新改进小波阈值算法与传统的小波硬阈值和小波软阈值算法进行比较分析,结果表明该方法可以有效提高故障信号的信噪比,降噪效果明显,能有效获得滚动轴承的故障特征频率。  相似文献   

15.
针对滚动轴承早期故障特征非常微弱,易受随机噪声和其他信号干扰而难以提取等现象,提出了用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和变分模态分解(Variational Mode Decomposition,VMD)相结合的方法提取滚动轴承故障特征。首先用MCKD进行信号增强,然后利用VMD得到一系列模态,应用互相关系数和峭度准则筛选包含故障信息较为丰富的模态进行重构降噪,最后对重构信号进行包络解调提取故障特征。通过仿真分析和轴承故障模拟实验验证了该方法的有效性,可以精确地分离轴承故障振动信号的不同频率成分。  相似文献   

16.
受环境噪声、传递路径、信号衰减以及源信号本身比较微弱的影响,滚动轴承早期微弱冲击性故障的信号特征难以提取。近年来,最小熵解卷积(Minimum Entropy Deconvolution,MED)已经成功应用在旋转机械故障检测中来提取振动冲击。MED方法的提取过程是一个迭代选择的过程,通过迭代选择一个有限脉冲响应使信号的熵最小,从而对信号进行滤波。但是该方法有一定的局限性:其对于单一冲击的信号解卷积效果良好,但是处理具有强噪声或者多个冲击源共同作用时的信号很困难。为了解决这个问题,提出新的解卷积方法:最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD),可有效利用滚动轴承故障周期性冲击的特点,其与MED相比,克服了单一冲击的限制,对两种冲击源甚至是多种共同卷积的解卷积具有更好的特征提取效果。仿真和实验对比验证了该方法具有良好的降噪和故障特征增强效果。  相似文献   

17.
基于MMSE和谱峭度的滚动轴承故障诊断方法   总被引:1,自引:2,他引:1       下载免费PDF全文
共振解调作为滚动轴承常用的故障诊断方法,存在带通滤波器参数难以确定的缺点,针对此缺点以及滚动轴承早期故障信号信噪比低的问题,结合最小均方误差估计方法(MMSE)和基于谱峭度的共振解调方法,并将其应用于滚动轴承早期微弱故障诊断中。首先用MMSE方法抑制白噪声来提高信噪比,然后利用谱峭度自适应确定最优带通滤波器参数,最后对带通滤波后的信号进行能量算子解调谱分析,得出诊断结果。数字仿真信号和实验信号验证了该方法的有效性。  相似文献   

18.
针对快速谱峭度图和传统切片MSB(modulation signal bispectrum)算法在强干扰条件下提取轴承故障特征不佳的问题,提出一种基于调制增强切片MSB的滚动轴承故障特征提取方法。首先利用MSB算法计算得到原始振动信号的调制信号双谱,对主维度进行切片叠加得到载波谱;然后基于MSB凸显滚动轴承故障信号调制特征的性质,通过粒子群寻优算法对切片范围进行择优;最后,对故障特征所在切片的双谱相干函数与调制信号双谱进行组合处理,进行增强性重构得到调制谱,去除了大部分噪声分量,直接提取出故障特征。通过仿真、实验验证了调制增强切片MSB算法能够实现长传递路径、强噪声干扰条件下的滚动轴承故障特征提取,所得结果比快速谱峭度图更加直观、清晰。  相似文献   

19.
在利用声学信号分析法对滚动轴承进行故障诊断时,环境噪声或其它设备噪声会严重影响目标声信号的提取并降低诊断精度。针对这一问题,提出一种用于故障特征增强的谱峭度-波束形成方法。该方法首先利用快速谱峭度算法确定最优滤波频带,然后根据确定的频带,利用2 阶锥规划方法设计恒定束宽波束形成器并提取目标频带信号,最后对提取的带限信号进行包络解调得到轴承故障特征频率。实验结果表明,该方法能够在强干扰环境下有效提取滚动轴承故障特征,并且相较于传统的延时求和波束形成器具有更好的效果。  相似文献   

20.
特征提取在滚动轴承故障诊断中起着至关重要的作用,然而实测的振动信号本质上是复杂的、非平稳的,同时故障轴承的脉冲特征常常淹没于噪声中。为了有效提取强噪声背景下的滚动轴承故障信息,提出一种基于总变差去噪(Total Variation Denoising,TVD)和快速谱相关(Fast Spectral Correlation,Fast-SC)相结合即TVD-Fast SC故障特征提取方法;首先,利用总变差去噪方法对振动信号进行消噪,提高信号的信噪比(SNR);然后,对去噪后的信号进行快速谱相关分析,准确地识别出轴承的故障特征频率。仿真和实验结果表明,该方法可以有效地提取出滚动轴承的微弱故障特征信息,分析效果优于直接快速谱相关方法和小波阈值去噪与快速谱相关结合的方法,为滚动轴承微弱故障特征提取提供一种有效的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号