首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
火花源原子发射光谱法测定纯金中14种杂质元素   总被引:5,自引:0,他引:5       下载免费PDF全文
探讨了火花源原子发射光谱法分析纯金中14种杂质元素的分析条件、标准样品及分析样品处理方法,确定了各杂质元素工作曲线线性范围。采用压片方法制备漂移校正样品和纯金试样,用稀盐酸去除试样表面的沾污,工作曲线采用仪器内置的纯金标准曲线,并通过内部质量控制样品和校正样品监控。对于纯金中14种杂质元素的测定,相对标准偏差小于2.76%;测定结果与其他方法相比,吻合较好。  相似文献   

2.
通过对粗金样品中各杂质元素的研究,确定了样品中铜、铁、镍、钯、铂、铋、锌7种元素适用于该方法的上限值。建立了一种通过加入标准金,降低杂质元素在样品中含量的分析方法,可有效测定复杂基体粗金中的金含量。该方法测得值与理论值基本接近,结果重复性标准偏差为0.92%~2.05%,操作过程简便、测试结果准确,可用于日常生产中对于此类样品的检测。  相似文献   

3.
高纯金属纯度分析时为了克服基体效应的影响,常采用分离基体的方法对其中痕量杂质元素进行分析测定,不仅前处理过程较为复杂,且易造成样品污染。实验以硝酸(1+1)溶解样品,在利用电感耦合等离子体质谱(ICP-MS)半定量法确定高纯银中杂质种类的基础上,通过选择适当的同位素克服了质谱干扰,采用标准加入法绘制校准曲线,在不分离基体的前提下消除了银基体对痕量杂质元素测定的基体效应影响,最终实现了ICP-MS对高纯金属银中铅、砷、铜、镍、锑、锡、钯、铋8种痕量金属杂质的直接定量测定。同时在采用ICP-MS法对高纯金属银中8种痕量金属杂质元素测定后,可根据国标方法GB/T 21198.5—2007中差减法最终计算得到银的纯度。方法的检出限为0.09~1.1 μg/L,将实验方法应用于高纯金属银的实际样品分析,加标回收率为96%~106%,相对标准偏差(RSD,n=6)不大于5.0%。  相似文献   

4.
陈菲菲  魏成磊  黄蕊 《黄金》2005,26(8):41-43
研究并建立了纯银样品经硝酸溶解,标准基体匹配,直接用电感耦舍等离子体发射光谱测定纯银中铜、铁、铅、锑、铋、钯、硒、碲、锌杂质元素的方法。其检出限分别为0.0039,0.0033,0.015,0.015,0.0073,0.024,0.0080,0.0042,0.0030μg/ml;回收率均在97.2%-102.5%之间;相对标准偏差为0.76%-5.02%。  相似文献   

5.
火花源原子发射光谱法测定纯银中12种杂质元素   总被引:3,自引:0,他引:3       下载免费PDF全文
随着银市场的开放,银锭交易中质量纠纷日益增多。为适应市场要求,国家质量监督检验检疫总局在修定我国现行的国家标准[1]中,采用ASTM B413-97a(2003)《精炼银》标准,在质量分数99·99%银中新增Se,Te,Pd 3种杂质元素分析方法标准;同时中国有色工业标准计量质量研究所正制定火花源原子发射光谱法测定纯银的分析方法标准。为配合标准修定任务,采用Spec-tro LAB S光谱仪中铜基的Se,Te通道,用银棒压片火花源发射光谱法测定银锭中12种杂质元素。该方法灵敏度高,操作简便,分析速度快,准确度高,样品消耗量少。1实验部分1·1主要仪器与试剂Spe…  相似文献   

6.
铑化合物中杂质元素的测定,无统一的标准方法,产品标准中杂质元素分析通常是将化合物还原为铑粉后以摄谱法测定,该方法既需要将化合物还原成铑粉,又需要消耗粉末光谱标样,分析流程长,成本高。实验采用盐酸-硝酸混合酸溶解样品,选择Ni 221.647 nm、Fe 259.940 nm、Cu 324.754 nm、Al 396.152 nm、Pb 220.353 nm、Pd 340.458 nm、Pt 299.797 nm、Ca 393.366 nm、Mg 279.553 nm、Zn 213.856 nm、Cr 205.552 nm为分析谱线,通过扣除背景消除了背景干扰,再通过实验证明无基体效应以及被测元素之间无干扰的基础上,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定三氯化铑中11种杂质元素的方法。各元素校准曲线的线性相关系数r均大于0.999;方法定量限均小于0.001%(质量分数)。实验方法用于测定三氯化铑中镍、铁、铜、铝、铅、钯、铂、钙、镁、锌、铬,结果的相对标准偏差(RSD,n=11)为6.4%~16.5%;三氯化铑中11种杂质元素的测定结果与采用国家标准方法GB/T 1421—2004测定的结果相吻合。  相似文献   

7.
准确测定铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑等元素含量,是从铂钯精矿中回收有价元素的重要理论支撑。一般采用重量法测定其中铂和钯,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铜、金、硒、碲、铋,而铱、铑等多采用铅试金或锑试金预富集后再采用原子吸收光谱法逐一测定,存在分析速度慢、周期长、操作繁琐、检测成本高等问题,难以满足实际检测要求。为实现上述元素的准确、快速测定,实验通过密闭消解样品,建立了一次溶解样品后直接用ICP-AES测定铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑的方法。实验表明,在50 mL密闭消解罐中加入0.2 g样品,以王水(1+1)溶解,于160 ℃干燥箱中消解6 h,可将样品完全溶解;再选择合适的分析谱线消除谱线干扰,可实现ICP-AES对铂钯精矿中各元素的测定。在最优的实验条件下,各元素的校准曲线相关系数均大于0.999,方法检出限为0.000 1%~0.001 6%。实验方法用于测定实际铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑,结果的相对标准偏差(RSD,n=11)为0.33%~4.8%,加标回收率为96%~103%。  相似文献   

8.
盐酸溶解样品后,将稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁配制成混合标准溶液系列并绘制校准曲线,保持标准溶液系列中稀土总量与试液中稀土总量一致以消除基体效应,采用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定电池级混合稀土金属中稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁。进行了各元素分析谱线的选择,考察了稀土元素对非稀土杂质元素及非稀土杂质元素间的干扰情况。各元素校准曲线线性回归方程的相关系数均不小于0.998 8。按照实验方法测定合成样品中稀土配分镧、铈、镨、钕,测定结果与理论值一致,结果的相对标准偏差(RSD,n=11)不大于3.0%。非稀土杂质铁、硅、锌、镁的检出限为0.001 0%~0.002 8%(质量分数),测定下限为0.005 0%~0.014%(质量分数)。对低锌低镁电池极混合稀土金属样品中非稀土杂质进行测定,测定值与参考值一致,测定结果的相对标准偏差(RSD,n=11)为1.3%~9.0%。按照实验方法测定实际电池级混合稀土金属样品和富镧金属样品中稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁,测定值与其他分析方法的结果基本一致。  相似文献   

9.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

10.
刘婷  李剑  李震乾  卢凡  冯婧  罗策 《冶金分析》1981,42(7):54-61
优级纯硝酸常用作试样分解或作为酸度调节剂广泛应用于试样制备过程中,因此准确可靠地监控优级纯硝酸中相关的杂质元素含量具有重要意义。先采用校准曲线法进行半定量测定,再按各元素含量的0.5倍、1.0倍、2.0倍浓度范围确定了每一元素标准加入的量,建立了普通分辨率的电感耦合等离子体质谱(ICP-MS)标准加入法直接测定优级纯硝酸中银、铝、砷、钡、铋、钙、铬、铯、铜、铁、铟、镁、锰、钠、镍、铅、铷、钯、锡、锶、铊、铀、钒、锌、硼、铪、铌、钽、钛、钨、锆含量的方法。通过质谱干扰分析并结合同位素丰度确定了待测同位素;选用动态反应池技术(DRC)测定钙、铬、铁、锰和钒这5个元素,并对各元素测定条件进行了优化,其余元素则采用标准模式测定;采用干扰校正方程来克服115Sn对115In形成的同质异位素干扰。在优化的条件下,建立各元素标准加入法的校准曲线,并用仪器软件设置为“外标法”模式的工作曲线,后续对其他优级纯硝酸进行检测时可直接在此工作曲线下进行,不需要每个样品都进行标准加入。各元素工作曲线线性相关系数r均不小于0.999,各元素检出限在0.000 3~0.114 ng/mL之间,定量限在0.001 0~0.38 ng/mL之间。将实验方法应用于优级纯硝酸样品中31种痕量杂质元素的测定。结果表明,钙和钠质量浓度超过75 ng/mL,硼、铁、镁、锌4种元素质量浓度介于5.0~11.0 ng/mL,其他元素质量浓度均小于5.0 ng/mL,测定结果的相对标准偏差(RSD,n=7)在0.89%~5.9%之间,回收率在90%~110%之间。方法不仅解决了高分辨率电感耦合等离子体质谱检测成本过高的问题,而且将样品溶解后采用标准加入法进行测定,避免了蒸发富集样品前处理方式效率相对较低、存在样品污染的风险。  相似文献   

11.
刘婷  李剑  李震乾  卢凡  冯婧  罗策 《冶金分析》2022,42(7):54-61
优级纯硝酸常用作试样分解或作为酸度调节剂广泛应用于试样制备过程中,因此准确可靠地监控优级纯硝酸中相关的杂质元素含量具有重要意义。先采用校准曲线法进行半定量测定,再按各元素含量的0.5倍、1.0倍、2.0倍浓度范围确定了每一元素标准加入的量,建立了普通分辨率的电感耦合等离子体质谱(ICP-MS)标准加入法直接测定优级纯硝酸中银、铝、砷、钡、铋、钙、铬、铯、铜、铁、铟、镁、锰、钠、镍、铅、铷、钯、锡、锶、铊、铀、钒、锌、硼、铪、铌、钽、钛、钨、锆含量的方法。通过质谱干扰分析并结合同位素丰度确定了待测同位素;选用动态反应池技术(DRC)测定钙、铬、铁、锰和钒这5个元素,并对各元素测定条件进行了优化,其余元素则采用标准模式测定;采用干扰校正方程来克服115Sn对115In形成的同质异位素干扰。在优化的条件下,建立各元素标准加入法的校准曲线,并用仪器软件设置为“外标法”模式的工作曲线,后续对其他优级纯硝酸进行检测时可直接在此工作曲线下进行,不需要每个样品都进行标准加入。各元素工作曲线线性相关系数r均不小于0.999,各元素检出限在0.000 3~0.114 ng/mL之间,定量限在0.001 0~0.38 ng/mL之间。将实验方法应用于优级纯硝酸样品中31种痕量杂质元素的测定。结果表明,钙和钠质量浓度超过75 ng/mL,硼、铁、镁、锌4种元素质量浓度介于5.0~11.0 ng/mL,其他元素质量浓度均小于5.0 ng/mL,测定结果的相对标准偏差(RSD,n=7)在0.89%~5.9%之间,回收率在90%~110%之间。方法不仅解决了高分辨率电感耦合等离子体质谱检测成本过高的问题,而且将样品溶解后采用标准加入法进行测定,避免了蒸发富集样品前处理方式效率相对较低、存在样品污染的风险。  相似文献   

12.
灰吹富集-氯化钠电位滴定法测定贵铅中银   总被引:1,自引:0,他引:1       下载免费PDF全文
肖刘萍 《冶金分析》2018,38(3):56-60
采取样品加铅块灰吹法于900℃灰吹炉中对贵铅中银进行富集,灰吹后得到合粒。用硝酸溶解合粒得到硝酸银溶液,最后用氯化钠电位滴定法分析硝酸银溶液中银含量,建立了灰吹富集-氯化钠电位滴定法测定贵铅中银的分析方法。对灰吹富集的实验条件进行了考察,确定灰吹方式为样品加铅块灰吹法、样品量为0.65g、铅块用量为25g。实验称取与样品中银含量相当的金属银,采用与样品相同的实验方法进行灰吹,以银的加入量与回收量的比值作为补正因子对样品中银在灰吹过程的损失进行了补正。探讨了贵铅样品中共存杂质元素(铅、锑、铋、铜、砷、碲、铁、镍、钯)对测定的干扰,结果表明,贵铅样品中共存杂质元素不干扰银的测定。将实验方法应用于贵铅实际样品中银的测定,测定结果的相对标准偏差(RSD,n=8)为0.38%~0.94%,加标回收率在99%~101%之间,所得结果与硫氰酸钾电位滴定法测定值相吻合。  相似文献   

13.
利用石墨消解仪斜坡升温7 min至120 ℃,并在120 ℃保持20 min,以10%(V/V)王水为介质,实现了电感耦合等离子体质谱法(ICP-MS)对影响海绵钯品级的18种杂质元素的测定。研究表明:通过选择20 μg/L的45Sc 、89Y、159Tb作为内标及控制测定液Pd基体质量浓度为2.0 mg/mL,可有效校正基体效应;铝、镍、铜、锌、钌、铑、铂、银、锡、铱、金、铅、铋以标准模式进行测定,镁、硅、铬、锰、铁以氨气反应模式进行测定可消除质谱干扰。在选定的实验条件下,各元素校准曲线线性相关系数不小于0.999 6,方法检出限为1.0~42 ng/L。采用实验方法对海绵钯中杂质元素进行测定,所得结果的相对标准偏差(RSD,n=11)为0.8%~2.8%,加标回收率为90%~107%。将实验方法对海绵钯实际样品的测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比,二者基本一致。  相似文献   

14.
林园 《冶金分析》2018,38(3):41-45
足金样品的检测有着广泛市场需求,但常用的火焰原子吸收光谱法(FAAS)、电感耦合等离子体原子发射光谱法(ICP-AES)对于铅、镉质量分数均小于0.0001%的足金样品无能为力,而电感耦合等离子体质谱法(ICP-MS)标准加入校正-内标法不能用于银、铜含量高(质量分数均大于0.001%)的足金样品检测。采用王水溶解样品后直接用乙酸乙酯萃取,以2%~5%(体积分数)硝酸为测定介质,建立了ICP-MS测定纯度为99.9%~99.999%足金中铜、银、铅、镉4种主要杂质元素的方法。干扰试验表明,足金中高含量银对测定铜、铅、镉没有干扰。在选定的实验条件下,各元素校准曲线的相关系数不小于0.9994,方法测定下限为0.01~0.19μg/g。将实验方法应用于足金实际样品分析,结果的相对标准偏差(RSD,n=6)为1.3%~2.6%,加标回收率为99%~105%。采用实验方法对3种纯度(99.9%、99.99%、99.999%)足金样品中的铜、银、铅和镉进行测定,测得结果分别与原子吸收光谱法(AAS)或ICP-MS标准加入校正-内标法基本一致。方法可实现纯度为99.9%~99.999%足金中银、铜、铅、镉的测定。  相似文献   

15.
邵海舟  刘成花 《冶金分析》2011,31(12):54-57
研究了在60 ℃的温度下用硝酸和氢氟酸溶解试样,然后用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌铁中铌、钛、钽、硅、铝、磷的方法。为消除基体元素对被测元素的测定影响和克服在绘制校准曲线时因使用的铌铁标样中待测元素含量范围过窄而致使试样中的被测元素落在校准曲线线性范围之外,使用铌铁标样打底,加入适量标准系列溶液建立校准曲线。样品中高含量的铌采用高精密度测量法,从而提高了测定结果的准确性。本法用于测定铌铁标样中的铌、钛、钽、硅、铝和磷含量,测定值与国标法相符,测定结果的相对标准偏差小于1.5%。  相似文献   

16.
罗荣根 《冶金分析》2014,34(11):46-50
采用硝酸-过氧化氢混合溶液分解样品,酒石酸防止锑、铋等元素水解,抗坏血酸还原后过滤并收集滤液。还原的银用硝酸-过氧化氢-酒石酸混合溶液分解,盐酸沉淀分离基体银以消除基体干扰,合并滤液,并在稀盐酸介质中,于电感耦合等离子体原子发射光谱仪(ICP-AES)上测定银中8种杂质元素(铜、铋、铁、铅、锑、钯、硒和碲)含量。通过试验,确定了适宜称样量为0.50~1.00 g。体系中残余银和共存其他杂质元素对测定结果无影响。使用不同方法对试验样品中铜、铋、铁、铅、锑、钯、硒和碲进行测定,测定结果与国标方法相符,相对标准偏差均小于5.0%。  相似文献   

17.
锆材中杂质元素Li、Na、Mg、Ca含量直接影响材料的性能,因此快速、准确地测定核纯级海绵锆中Li、Na、Mg、Ca元素含量具有重要意义。采用HNO3-HF溶解样品,选择Li 670.784nm、Na 589.592nm、Mg 279.553nm、Ca 422.673nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Li、Na、Mg、Ca,从而建立了核纯级海绵锆中Li、Na、Mg、Ca的测定方法。测定体系中控制HNO3浓度小于1.50mol/L。对校准曲线法和标准加入法进行对比,结果表明:同一元素使用标准加入法时校准曲线的斜率总是小于标准曲线法校准曲线的斜率;使用标准曲线法与标准加入法时,Li、Na、Ca相应测定结果的回收率为93%~106%,但对Mg而言,其标准加入法的测定结果比标准曲线法高,且标准加入法的回收率优于标准曲线法。因此,实验使用标准加入法制作校准曲线消除基体效应的影响。各元素在0.10~2.0mg/L范围内校准曲线呈线性,相关系数均大于0.999;方法中各元素检出限为0.06~2.34mg/kg。按照实验方法测定核纯级海绵锆中Li、Na、Mg、Ca,结果的相对标准偏差(RSD,n=6)小于10%,加标回收率在94%~109%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号