共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
基于移动最小二乘逐点逼近思想,移动权被引入到最小二乘支持向量机的误差变量中,得到新算法的模型.此外,证明了用移动最小二乘支持向量机作函数估计与在特征空间中用移动最小二乘法得到的解是一致的,揭示了移动最小二乘支持向量机所选择的核函数相当于移动最小二乘法所选择基函数组.数值试验与实例进一步验证所提出方法的优越性. 相似文献
3.
提出一种基于舍一交叉验证优化最小二乘支持向量机(LS-SVM)的旋转机械故障诊断模型。首先将故障信号EMD分解为平稳IMF分量,再选择表征故障调制特征的IMF分量并构造瞬时幅值欧式范数作为故障特征矢量输入到舍一交叉验证(leave-one-outcross-validation, LOO-CV)优化线性核LS-SVM中进行故障识别。EMD分解可自适应分离故障调制信号;瞬时幅值欧式范数矢量的不同表征各类故障的差异;舍一交叉验证优化惩罚因子可以使线性核LS-SVM克服对故障类型与模式编号映射关系先验知识的依赖,提高LS-SVM的故障预测精度和自适应诊断能力。一个深沟球轴承故障诊断实例说明该模型的有效性。 相似文献
4.
5.
介绍和比较标准支持向量机(SVM)和最小二乘支持向量机(LS-SVM)基本原理的基础上,探讨了一种利用LS-SVM进行传感器动态误差补偿的方法,并给出了相应的过程和算法。与标准SVM补偿方法比较,该方法的优点是明显的:用等式约束代替标准SVM算法中的不等式约束,将求解二次规划问题转化为直接求解线性矩阵方程,在相同样本条件下,使得补偿器构造速度提高1~2个数量级。通过对SVM和LS-SVM传感器动态补偿的仿真分析和实验结果对比表明,在噪声条件下,LS-SVM方法的补偿误差约为SVM的40%。因此,LS-SVM补偿方法学习速度快,抗噪声干扰能力强,更适合传感器动态补偿。 相似文献
6.
7.
目的基于最小二乘支持向量机回归(LSSVR),研究扫描仪图像输入设备的特征化方法。方法以ColorChecker SG标准色卡为目标,通过最小二乘支持向量机建立RGB三通道值到CIE Lab色度值的非线性映射模型,采用基于交叉验证的网格搜索确定模型最优参数,优化LSSVR模型,实现彩色扫描仪的色度特征化。结果所建模型的训练集R-squared为0.996,验证集R-squared为0.998,训练集与验证集的CIEDE2000平均色差分别为1.1463,1.2754。结论 LSSVR模型能够较好地实现彩色扫描仪色度特征化,泛化能力较强,此模型可有效地提高彩色扫描仪特征化的精度且计算处理速度更快。 相似文献
8.
针对群智能算法优化支持向量机模型应用在滚动轴承故障诊断领域中易陷入局部最优、准确率较低的问题,提出了一种基于改进麻雀算法(sparrow search algorithm, SSA)优化支持向量机(support vector machine, SVM)的滚动轴承故障诊断方法。首先引入均匀化分布Chebyshev混沌映射初始化麻雀种群,以提高种群空间分布均匀性,之后将自适应惯性权重融入麻雀算法的发现者位置更新,最后对更新位置后的最优麻雀进行随机游走扰动,提高算法的全局和局部搜索能力,避免算法陷入局部最优。将该算法用于支持向量机的参数优化,构建改进麻雀算法优化支持向量机故障诊断模型实现对轴承故障信号的分类诊断。滚动轴承故障诊断试验分析结果表明,该算法模型故障分类效果明显优于粒子群算法优化支持向量机模型、遗传算法优化支持向量机模型和麻雀算法优化支持向量机模型,能够有效识别滚动轴承各故障类型。 相似文献
9.
10.
11.
基于最小二乘支持向量机的传感器非线性动态系统辨识 总被引:1,自引:0,他引:1
讨论了一种基于最小二乘支持向量机的非线性动态传感器系统辨识方法,并给出了相应的推导过程和学习算法.首先,将传感器的非线性动态系统分解为静态非线性子环节和动态线性子环节串联--Hammerstein模型;然后,建立类似线性的中间模型,通过该模型能将Hammerstein模型的非线性传递函数转换为等价的类线性形式;再通过LS-SVM线性回归算法求取中间模型参数;最后推导出中间模型参数与Hammerstein模型参数之间的关系,并通过该关系反演出原传感器系统的Hammerstein模型参数,实现传感器非线性动态辨识.仿真与实际传感器系统辨识的实验结果均表明该方法可行. 相似文献
12.
13.
根据文本分类的特点,在对最小二乘支持向量机方法进行详细分析的基础上,创建了基于最小二乘支持向量机的多元文本分类器.实验表明,采用该文本分类器能够在保持较高分类精度和召回率的基础上,提高训练效率,具有一定的可行性. 相似文献
14.
根据时间序列近期数据较远期数据包含有更多未来信息的思想,对最小二乘支持向量机预测方法进行了扩展,得到了更具一般性的最小二乘支持向量机预测模型,给出了扩展后的预测模型具体算法。两个时间序列的预测实例表明,扩展后的预测方法获得了更好的预测效果,提升了最小二乘支持向量机预测方法的价值。 相似文献
15.
根据桥梁挠度的各成分的特性,建立温度和温度挠度效应的非线性关系。为了提高温度挠度效应的拟合能力,提出多最小二乘支持向量机(M-LS-SVM)拟合模型。通过减聚类方法将输入空间划分为一些小的局部空间,在每个局部空间中用LS-SVM建立子模型。为解决子模型相互之间的严重相关问题,提高模型的精度和鲁棒性,各个子模型的预测输出通过主元递归(PCR)方法连接。实验和分析结果表明:该方法能分离挠度监测信号中的温度效应,为从长期监测信号中进行损伤识别提供基础数据。 相似文献
16.
17.
针对电铲供电机组振动时间序列是个非线性、非平稳的复杂时间序列,难以用单一预测方法进行有效预测的问题,建立了一种基于小波分解和最小二乘支持向量机混合模型进行状态预测的方法.首先通过小波分解,将原始振动时间序列分解到不同层次,然后根据分解后各层次分量的特点选择不同的嵌入维数和LS-SVM参数分别进行预测,最后重构得到原始序列的预测值.对某电铲供电机组振动趋势的预测结果表明,该模型的预测性能好于单一的支持向量机预测方法. 相似文献
18.
针对传统迟滞模型存在的待辨识参数多、参数辨识过程复杂和辨识精度低等问题,采用最小二乘支持向量机对气动肌肉的位移/气压迟滞开展建模研究。通过非线性映射将原始数据空间映射到高维空间,将原系统的非线性问题变成高维空间中的线性问题,借助于最小二乘法求解该线性方程组,从而提高其求解速度及收敛精度。在气动肌肉迟滞特性实验的基础上,采用所建数学模型,与经典的PI模型进行对比。结果表明,采用最小二乘支持向量机建立的数学模型具有更高的建模精度,均方差和平均误差相比PI模型分别减小了99.21%和99.1%,该方法可为后续气动肌肉的迟滞补偿控制提供有效的手段。 相似文献
19.
最小二乘支持向量机在热舒适性PMV指标预测中的应用研究 总被引:1,自引:0,他引:1
介绍了一种新型的机器学习算法一最小二乘支持向量机的原理,并针对预测PMV指标建立了最小二乘支持向量机预测模型。该模型的预测结果表明,最小二乘支持向量机预测准确度高,计算过程速度快,可以满足以PMV指标作为被控参数的空调系统控制的要求。 相似文献