首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
根据昆钢转炉钢渣人工矿物性质和金属铁及磁性铁嵌布特性,研发了以+70 mm大块梯级分选选铁(梯级破碎-筛选-磁选)、-70 mm分级干式磁选抛尾、干式磁选粗精矿再湿式细磨梯级分选(湿式球磨-梯级筛选金属铁-磁选磁性铁)的新工艺,具有工艺流程简单、处理量大和处理成本低、金属铁和磁性氧化铁品位和回收率高和易于分级利用的优点。同时,通过工业化生产实施建立了60万t/a转炉钢渣磁选厂,年产铁块和铁精矿6.44×104t以上,磁选尾渣用于制作水泥和免烧砖等,废水闭路循环利用。  相似文献   

2.
将工业铜渣和工业镁渣按一定比例混合后进行复合改质,对改质后混合渣进行磁选,并通过XRD、SEM分析和热力学计算对改质前后混合渣中的物相变化特征进行研究。结果表明,复合改质能够使铜渣中弱磁性富铁相铁橄榄石向强磁性镁铁尖晶石转变,并可通过磁选进行分离。碱度的降低有利于混合渣中镁铁尖晶石形成,但不利于硅酸盐相生成。本文试验范围内碱度的最佳值为2.05,在该碱度下混合渣的磁选产率和回收率分别为65.32%和79.34%,且磁选后尾渣中硅酸盐相含量相对较多。  相似文献   

3.
对比分析了各种钢渣处理方法,认为热闷法处理的钢渣渣铁分离效果好,尾渣性能稳定,是最实用的钢渣一次处理方法,钢渣处理工艺设计中应优先考虑。实践证明,钢渣不经细磨过程较难经济有效地选出其中有价铁(磁性物)。因此,在钢渣二次处理工艺设计时应考虑设置磨制环节。钢渣处理工艺设计应注重勤筛分、多磁选。  相似文献   

4.
汪寅夫 《冶金分析》1982,40(1):22-27
磁性铁含量的测定是铁矿勘查中的基本分析项目之一。以往常采用手工磁选法对磁性铁分离后再进行测定,但手工磁选法不仅容易出现清洗不彻底或由于水流难以控制使磁性铁流失等现象,而且各实验室采用的永久磁铁规格不统一也会导致测定结果的重现性较差。实验自主设计了由框架、传动及淋洗系统3大部分组成的磁性铁分离装置,不仅提高了分离效率,还可一人对多个样品同时操作。对该装置应用于磁性铁分离时的条件进行了单因素和正交试验,并将其应用于铁矿石中磁性铁含量的测定。结果表明,磁性铁分离装置对磁性铁分离的最佳条件是磁场强度为80Gs,水流速度为30mL/min,翻转速度为70r/min,淋洗时间为3min;样品中磁性铁的含量对测定结果的影响较小。采用实验方法对铁矿石物相成分分析标准物质中磁性铁含量进行测定,结果的相对标准偏差(RSD,n=8)为0.80%和1.0%。采用实验方法对2个铁矿石实际样品进行测定,测定结果与标准方法YS/T 1047—2015基本吻合。  相似文献   

5.
汪寅夫 《冶金分析》2020,40(1):22-27
磁性铁含量的测定是铁矿勘查中的基本分析项目之一。以往常采用手工磁选法对磁性铁分离后再进行测定,但手工磁选法不仅容易出现清洗不彻底或由于水流难以控制使磁性铁流失等现象,而且各实验室采用的永久磁铁规格不统一也会导致测定结果的重现性较差。实验自主设计了由框架、传动及淋洗系统3大部分组成的磁性铁分离装置,不仅提高了分离效率,还可一人对多个样品同时操作。对该装置应用于磁性铁分离时的条件进行了单因素和正交试验,并将其应用于铁矿石中磁性铁含量的测定。结果表明,磁性铁分离装置对磁性铁分离的最佳条件是磁场强度为80Gs,水流速度为30mL/min,翻转速度为70r/min,淋洗时间为3min;样品中磁性铁的含量对测定结果的影响较小。采用实验方法对铁矿石物相成分分析标准物质中磁性铁含量进行测定,结果的相对标准偏差(RSD,n=8)为0.80%和1.0%。采用实验方法对2个铁矿石实际样品进行测定,测定结果与标准方法 YS/T 1047—2015基本吻合。  相似文献   

6.
济钢现有的钢渣后续处理技术已经不能满足当前对资源综合利用的要求。采用鄂式破碎加圆锥破碎的两级破碎工艺,增加循环破碎技术,实现钢渣全量破碎处理,保证满足下道工序对非磁性钢渣的粒度10 mm的要求;采用强、弱磁性结合、多级磁选技术,实现钢渣的渣铁深度分离,降低了非磁性渣中的含铁量,满足了尾渣用于生产微粉的要求。按照年处理钢渣量100万t测算,年增加收益150万元。  相似文献   

7.
通过钢渣磁选粉特性基础的研究,提出了用钢渣磁选粉生产直接还原铁的新方法,并进行了理论解析和试验验证。采用还原焙烧-磁选的方法可以实现钢渣磁选粉生产直接还原铁,在还原温度为1250℃、C/0为0.8、恒温时间为20min的条件下,可以得到T.Fe含量94.34%、M.Fe含量92.86%、P含量0.146%、铁回收率为90.1%的直接还原铁。此研究为钢渣磁选粉合理高效利用提供理论支持和技术依据。  相似文献   

8.
通过钢渣磁选粉特性基础的研究,提出了用钢渣磁选粉生产直接还原铁的新方法,并进行了理论解析和试验验证。采用还原焙烧-磁选的方法可以实现钢渣磁选粉生产直接还原铁,在还原温度为1250℃、C/0为0.8、恒温时间为20min的条件下,可以得到T.Fe含量94.34%、M.Fe含量92.86%、P含量0.146%、铁回收率为90.1%的直接还原铁。此研究为钢渣磁选粉合理高效利用提供理论支持和技术依据。  相似文献   

9.
钢渣磁选粉物相以硅酸三钙为主,其次为铁酸盐相、硅酸二钙、铁酸镁、RO相等;烧结配加2%的钢渣磁选粉替代钢渣粉时,混合料中3 mm粒级含量降低4%~5%,有利于改善料层透气性,烧结矿成分变化不大;钢渣磁选粉中的磷含量较钢渣粉少0.3%,虽然更有利于烧结使用,但仍会影响烧结矿和铁水磷含量,因此只能限制循环次数及使用范围。  相似文献   

10.
探讨了在尾渣金属铁含量小于2%的条件下,进一步提高钢渣磁选粉品位的合适原料粒级、合适的磁场强度与磁筒转速的磁选试验,为公司钢渣磁选粉品质的改进提供依据。  相似文献   

11.
铜冶炼炉渣综合利用技术的研究与探讨   总被引:4,自引:0,他引:4  
铜冶炼渣具有硬度大、密度大、夹杂冰铜块的特点,综合回收难度大,生产成本高。为回收炉渣中铜、铁资源,主流选矿工艺为半自磨+球磨+浮选+磁选,可获得合格的铜精矿和多种用途的铁精矿产品。其指标的高低与炉渣冷却方式、碎磨方式、选矿工艺等密切相关,我国尾渣品位已经降至0.35%以下,比国外尾渣品位降低0.05个百分点以上。  相似文献   

12.
对铜渣进行XRD物相、扫描电镜和能谱以及主要元素含量的分析,指出从铜渣中回收铁的困难.综述了国内外从铜渣中回收铁的一些主要工艺方法及其优缺点,并提出弱氧化焙烧-磁选处理铜渣的新方法.铜渣和CaO的质量比为100:25,CO2和CO的气体流量分别为180 mL/min和20 mL/min,焙烧温度1 050 ℃,保温焙烧2 h后,冷却后破碎磨细至0.074 mm,再通过170 mT的磁场磁选分离得到铁精矿.获得了铁品位54.79 %的铁精矿和含铁22.12 %的磁选尾矿,铁的回收率为80.14 %,基本实现了铜渣中铁的回收.   相似文献   

13.
钒钛高炉渣是钒钛磁铁矿经高炉冶炼后形成的炉渣,其中的硫含量是划分该产品等级的一个重要指标。参照行业标准YB/T 4145—2006对坩埚进行预处理,称取(0.30±0.01)g试样于预先铺有0.8 g纯铁助熔剂的坩埚中,再向其内加入1.6 g钨锡助熔剂,设定分析功率为1.95 kW,建立了高频燃烧红外吸收法测定钒钛高炉渣中硫的方法。优化后的分析条件为:分析功率1.95 kW;以0.8 g纯铁和1.6 g钨锡为助熔剂;称样量为0.30 g。空白试验结果表明,空白的标准偏差为0.000 5%,检出限和定量限分别为0.001 5%和0.005%。采用实验方法对钒钛高炉渣实际样品中的硫进行测定,测得结果与YB/T 505.8—2007中的重量法基本吻合,相对标准偏差(RSD,n=8)均小于3%。  相似文献   

14.
史长亮  张兵豪  孙小朋  李沙  李勇军 《钢铁》2015,50(12):105-109
 选取低品位、多组分磁性铁矿物转炉初炼钢渣,设计适用于细粒钢渣处理的多级辊式磁选机,开展了不同磨矿粒度下单级磁辊粗选及多级磁辊精选试验,对比了磁辊转频、分选行程对各粒度钢渣精矿品位及回收率的影响。结果表明:精选精矿品位明显高于粗选精矿品位,回收率略低;磁辊转频影响回收率较为明显,分选行程两边取值对磁选指标影响程度明显高于中间取值;磨矿粒度越细,磁选机综合处理效果越好;磨矿粒度小于0.3 mm粒级的占90%,精选精矿品位比原矿品位提高约32个百分点。  相似文献   

15.
A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings. Optimal process parameters, such as reductant and additive ratios, reduction temperature, and reduction time, were experimentally determined and found to be as follows: a limestone ratio of 25%, a bitumite ratio of 30%, and reduction roasting at 1473 K for 90 min. Under these conditions, copper-bearing iron powders (CIP) with an iron content of 90.11% and copper content of 0.86%, indicating iron and copper recoveries of 87.25% and 83.44% respectively, were effectively obtained. Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron, which was difficult to achieve the separation of these two metals. Thus, the copper went into magnetic products by magnetic separation. Adding copper into the steel can produce weathering steel. Therefore, the CIP can be used as an inexpensive raw material for weathering steel.  相似文献   

16.
脱硫渣中金属铁的含量对其再利用具有重要的指导意义,因此测定脱硫渣中金属铁的方法受到关注。在采用碘-乙醇浸取—重铬酸钾滴定法直接测定脱硫渣中金属铁时,因碘-乙醇的存在会干扰后续重铬酸钾滴定法对金属铁的测定,故在过滤分离沉淀后,需在高温下除尽滤液中的碘-乙醇后再进行测定,不仅操作较繁琐,且存在一定的安全隐患。据此,提出了碘-乙醇分离—重铬酸钾法间接测定脱硫渣中金属铁的方法,并对测定条件进行了优化。称取两份相同质量的试样,一份试样采用重铬酸钾滴定法测定其中的全铁量;另一份试样用碘-乙醇浸取其中的金属铁,过滤分离,弃去滤液,采用相同方法测定沉淀中的全铁量;两者之差即为一份试样中的金属铁量,以此间接计算出试样中金属铁的含量。采用实验方法测定金属铁质量分数在0.63%~2.63%之间的脱硫渣生产试样,测定结果与碘-乙醇浸取—重铬酸钾滴定直接测定法相符,相对标准偏差(RSD,n=6)在3.1%~15.9%之间。选择2个脱硫渣生产试样,分别加入不同质量的纯铁进行加标回收试验,金属铁的加标回收率在96%~108%之间。  相似文献   

17.
To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facili-ties, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag.The final recy-cling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered.Three types of slags, namely basic oxygen furnace slag, desul-furization slag, and iron ladle slag, were studied, and the results showed that the optimized re-covery efficiencies were 93.20%, 92.48%, and 85.82% respectively, and the recycling efficien-cies were improved by 9.58%, 7.11%, and 6.24% respectively.Furthermore, the abrasion be-tween the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles.In addition, the using amount of grinding balls was reduced by 0.46 kg when every 1 t steel slag was processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号