首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
旨在为结构减振设计奠定一定基础,研究约束阻尼板减振优化问题。建立约束阻尼板动力学平衡方程,推导模态损耗因子计算模型。构建以模态损耗因子最大为目标,黏弹性材料用量及模态频率变动最小为约束的阻尼板拓扑优化数学模型,推导模态损耗因子灵敏度算式。引入渐进结构优化方法对约束阻尼板动力学优化模型进行求解,采用独立网格滤波技术,解决优化迭代中出现的棋盘格问题。编制阻尼板拓扑优化程序,实现约束阻尼板减振优化。仿真显示,与非优化删除方法相比,采用渐进拓扑动力学优化,更有利于实现黏弹材料优化布局,且模态频率变化比较稳定。对阻尼结构进行谐响应分析,以验证拓扑优化方法有效性,引入模态损耗因子体积密度指标以评价阻尼板减振拓扑优化性能。研究表明,若能实现结构模态损耗因子最大化,约束阻尼板减振效果明显。该方法对于约束阻尼板设计具有较强实用性,拥有较高的稳定性。  相似文献   

2.
圆柱壳体阻尼材料布局拓扑优化研究   总被引:5,自引:5,他引:0  
采用渐进结构拓扑优化方法,以阻尼结构模态损耗因子最大化为目标,阻尼材料体积分数为约束条件,阻尼胞单元为设计变量,建立了圆柱壳体阻尼材料布局拓扑优化模型,对约束阻尼以及自由阻尼材料布局进行了拓扑优化。研究了阻尼结构模态损耗因子对阻尼胞单元位置的灵敏度,导出灵敏度计算表达式。根据渐进优化算法的优化准则,通过逐步删除利用率低的材料,使目标模态损耗因子达到最大化。给出了数值计算的例子,理论计算结果验证了拓扑优化设计方法的正确性和有效性  相似文献   

3.
旨在为减振设计提供理论基础,研究约束阻尼结构拓扑动力学优化。以阻尼材料用量、振动特征方程、模态频率为约束,以多模态损耗因子倒数的加权和最小为目标,建立了约束阻尼结构拓扑优化模型,引入MAC因子控制结构的振型跃阶。在引入质量阵惩罚因子基础上推导出优化目标灵敏度。考虑到优化目标函数的非凸性,采用常规准则法(OC)寻优可能会使拓扑变量出现负值或陷入局部优化,故引入数学规划移动渐近技术对OC法进行改进,从而将全体拓扑变量纳入改进算法的优化迭代全过程。编程实现了约束阻尼板改进OC法拓扑动力学优化并对改进法性能进行了仿真。结果显示,改进算法可得到更合理的约束阻尼层构形,可使结构取得更佳减振效果。研究表明,改进算法迭代稳定性更好、寻优效率更高、更具全域最优性。  相似文献   

4.
对附加自由阻尼的板件结构,考虑粘贴阻尼材料前后,中性面位置的变化,利用Matlab编程建立自由阻尼板有限元模型,并利用Rayleigh积分法推导了薄板结构的辐射声压表达式;以辐射声场内某点的声压最小为目标,阻尼材料的体积为约束条件,建立拓扑优化模型。以悬臂板结构为例,编写了拓扑优化程序,利用渐进结构优化算法,获得了阻尼材料的最优布局,并与以模态损耗因子最大为目标的拓扑优化结果进行了对比。结果表明:在主要关注目标是结构的声学性能时,直接以声压为目标的优化方法比以模态损耗因子最大为目标的优化方法更有针对性,效果更好。利用实验对仿真结果进行了实验验证。  相似文献   

5.
约束层阻尼短圆柱壳拓扑优化分析及实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对约束层阻尼短圆柱壳拓扑优化问题,采用基于模态应变能法的渐进结构优化算法(ESO),引入独立网格滤波技术, 通过灵敏度分析,用ANSYS的参数化设计语言APDL编写拓扑优化程序,获得一定约束层阻尼材料用量的约束层阻尼最优拓扑构形,并对约束层阻尼材料的优化布局进行实验验证。研究表明该拓扑优化方法正确,用于短圆柱壳约束层阻尼材料布局优化具有较强的工程实用性。  相似文献   

6.
根据经典薄板理论,建立约束阻尼板有限元模型,将其视作镶嵌于无限大刚性障板,利用Rayleigh积分法推导结构的辐射声功率及灵敏度表达式。以一阶峰值频率或频带激励下的声功率最小化为目标,约束阻尼材料体积分数为约束条件,建立拓扑优化模型,采用渐进优化算法,编制了优化计算程序,获得了约束阻尼材料的最优拓扑构型,并与全覆盖板及基板的辐射声功率进行了对比。研究表明:以声功率最小化为目标,对约束阻尼材料布局进行拓扑优化,能有效抑制结构的振动声辐射,为结构低噪声设计提供了重要的理论参考和技术手段。  相似文献   

7.
针对指定频带简谐激励下约束阻尼结构拓扑优化问题,建立以共振峰值平方最小为优化目标,约束阻尼材料用量为约束条件的约束阻尼板拓扑优化模型。优化过程中考虑约束阻尼结构改变对结构阻尼影响较大,将模态阻尼比灵敏度引入优化目标的灵敏度计算中,使优化目标灵敏度计算更准确合理。用渐进优化算法求解拓扑优化模型。给出数值算例,并实验验证优化模型及灵敏度分析方法的有效性。  相似文献   

8.
基于优化准则的约束阻尼材料优化配置   总被引:1,自引:4,他引:1       下载免费PDF全文
构建了以模态阻尼比为目标函数,阻尼材料用量为约束条件的拓扑优化模型。分析了模态阻尼比对基结构单元的灵敏度,导出了灵敏度表达式。在此基础上,提出了基于一种进化方式的约束阻尼材料优化配置方法。给出了几个典型算例,获得了满足阻尼材料用量的约束阻尼材料最优拓扑构型。研究表明:提出的优化模型和准则是正确的,能有效应用于约束阻尼材料的优化配置,为优化阻尼材料分布,降低结构振动与噪声,开辟了崭新的技术途径。  相似文献   

9.
利用渐进结构拓扑优化方法(Evolution Structural Optimization,ESO),以约束阻尼层质量为约束条件,以最大模态损耗因子为目标函数,编制了ESO法的可执行程序,并基于ABAQUS软件建模,开展了九宫板约束阻尼层的拓扑优化研究。发现随着约束阻尼层的删除率增大,结构模态损耗因子逐渐增至最大值后降低。而随着删除率的增大,结构单位质量阻尼性能逐渐增大,可见优化布局可以提高九宫板结构的抑振性能。为研究优化布局对结构应力分布的影响,模拟了多种振动工况下,优化前后九宫板结构的Mises应力分布云图及其最大应力,结果发现优化布局后九宫板结构Mises应力分布影响很小,且最大Mises应力值得到有效降低。并将该方法应用在一般复杂结构的优化设计,实现了较少阻尼性能损失达到减重的目的,具有重要的工程实用性。  相似文献   

10.
多孔阻尼复合板优化研究   总被引:1,自引:0,他引:1  
将约束层阻尼板中的阻尼层设计成具有周期方孔胞元的多孔阻尼结构,采用均匀化理论,计算多孔阻尼层的等效弹性张量。建立均匀化的约束层阻尼板有限元模型,计算多孔阻尼复合板的损耗因子。以多孔阻尼层等效剪切模量为设计变量,以结构模态损耗因子最大化为目标函数,对多孔阻尼复合板中的阻尼胞元进行尺寸优化。给出数值算例,并与商业有限元软件计算结果进行对比,结果表明:采用均匀化理论,对多孔阻尼复合板中的阻尼胞元尺寸进行优化是可行的,采用优化后等效剪切模量设计的阻尼胞元尺寸,不仅阻尼材料用量大为减少,减振效果也有所增强,该方法对约束阻尼结构的优化设计具有一定指导意义。  相似文献   

11.
着重分析磁橡胶约束阻尼处理方法(MRLD)的阻尼效果受激励力影响的原因。基于MRLD与传统约束阻尼处理(PCLD)不同的耗能机制,得到这两种阻尼处理方式下系统耗能量的比值,进而估算MRLD相比PCLD,其阻尼改进效果中存在的激励力有效区域的大致范围。研究表明,材料损耗因子b不仅决定激励力有效区域的范围,同时也决定MRLD所能达到的阻尼改进效果的最优值。  相似文献   

12.
A new method for enhancement of damping capabilities of segmented constrained layer damping material is proposed. Constrained layer damping has been extensively used since many years to damp flexural vibrations. The shear deformation occurring in the viscoelastic core is mainly responsible for the dissipation of energy. Cutting both the constraining and the constrained layer, which leads to segmentation, increases the shear deformation at that position. This phenomenon is called edge effect. A two-dimensional model of a cantilever beam has been realized for further investigations. An optimization algorithm using mathematical programming is developed in order to identify a cuts arrangement that optimizes the loss factor. The damping efficiency is estimated using the modal strain energy method. The Nelder–Mead simplex method is used to find the best distribution of cuts. In order to take into account geometrical limitations, the exterior point penalty method is used to transform the constrained objective function into an unconstrained objective function. As the optimization problem is not convex, a modal analysis is performed at each mode in order to identify initial cuts positions that lead to a global minimum. Over a large frequency range, the algorithm is able to identify a distribution of cuts that optimizes the loss factor of each mode under consideration.  相似文献   

13.
传统渐进结构优化法(ESO)删除的低效材料,仅是阶段性的低效材料,其中部分材料若不被删除,有可能成为后续优化中的非低效材料。误删材料可能使接下来的优化成为“将错就错”的优化。该文在ESO法基础上提出的“周期性扩大框架的渐进结构优化方法(PEFESO)”,周期性地恢复并检查保留材料周围被删除材料的效率,重新判定该部分材料是否应被恢复到结构中,有效地削弱了ESO法可能误删材料的不良影响。PEFESO法具备一定的全程寻优能力,计算结果优于传统的ESO法,易于在工程中推广使用。  相似文献   

14.
倪维宇  张横  姚胜卫 《包装工程》2021,42(15):156-164
目的 在不减小板壳结构动刚度的前提下有效提高板壳结构的抗振性能,提出一种板壳阻尼复合结构拓扑优化设计.方法 以结构模态阻尼比为目标函数,以某阶固有频率不小于设定值为约束条件,推导目标函数和约束条件对设计变量的灵敏度表达式,采用SIMP插值函数和移动渐近线法求解优化数学模型.结果 研究表明,文中提出的双材料阻尼层结构相比传统单材料阻尼层结构的振动响应明显减小,同时适当改变设计目标和约束条件,可满足不同的工程应用需要.结论 通过在宏观上对高刚度低阻尼材料和低刚度高阻尼材料的分布进行了设计,优化后的结构兼顾低刚度高阻尼材料的高阻尼特性和高刚度低阻尼材料的高刚度特性,实现了结构高刚度高阻尼的设计.  相似文献   

15.
本文针对某一乘用车车身结构振动引起的声辐射,建立了车身结构、声学空腔以及声固耦合有限元模型,分析了该乘用车车身的声固耦合特性。通过对车身各板件的贡献度分析,确定了对车内噪声贡献度最大的壁板。针对该壁板的阻尼减振降噪优化设计,建立了拓扑优化模型,采用渐进优化算法(ESO),计算了阻尼材料的优化布局。研究结果表明:阻尼材料的优化布局使阻尼材料的使用率大大提高,50%的阻尼材料用量能基本达到全覆盖阻尼材料壁板的降噪效果,阻尼结构优化设计对车内噪声控制具有一定的理论指导意义。  相似文献   

16.
蒲阳  鲍鼎文 《包装工程》2023,44(22):62-75, 101
目的 在数字化设计的背景下,探索基于结构性能化的算法找形方法,运用双向渐进结构拓扑优化算法(Bi-Directional Evolutionary Structural Optimization,BESO)展开创新设计实践研究。方法 在理解双向渐进结构拓扑优化算法的基本内涵、相关理论、历史发展和现状应用的基础上,分析其算法生成的优势及可行性,并以算法的组织模式与生形原理为前提,对其进行几何划分、约束条件、优化技术、结构模拟、材料设定、迭代生形等内容协同一体的生成策略研究,提供了多元选择的设计机会。结果 得到了运用双向渐进结构拓扑优化算法进行的基于初始形态设计、拓扑优化设计和后处理与制造三步骤创新设计实践结果。结论 此设计实践方案验证了该算法生成方法的设计应用可行性,同时也为多领域应用该算法提供了新思路和新方向。  相似文献   

17.
在柔性结构的减振处理中,传统被动无磁约束减振(PCLD)方法已被广泛采用,但是由于阻尼材料特性受温度和频率的影响,其减振效果受到限制。而采用在约束层上设置永磁体的方法(MCLD)可使阻尼层达到比传统约束阻尼处理方法更高的剪应变,从而增强粘弹层的阻尼耗能,提高低阶模态的减振效果。针对悬臂板的(m=1,n=1)、(m=2,n=1)的两阶扭转模态,在这两阶的方向上的节线y=B/2处设置永磁体,节线两侧设置磁约束阻尼层,研究MCLD的阻尼改进效果及规律。研究表明,在悬臂板的自由端铺设磁阻尼层时,能有效地提高阻尼减振效果;另外,对不同阻尼层的宽度,MCLD仍具有提高阻尼的能力。  相似文献   

18.
Hybrid damping designs with active piezoelectric materials and passive viscoelastic materials (VEMs) combine the advantages of both active and passive constrained layer damping (ACLD/PCLD) treatments.Researchers have established the standards for the extent and placement of the PCLD treatment for common structures. However for ACLD treatment, such detailed studies are not available. This study is aimed to examine, the effect of parametric variation of active constrained layer on the vibration control of the beams treated with optimally placed active or passive constrained layer damping patches. Finite element model is developed to model the open-loop and close-loop dynamics of active/passive constrained layer damping treated beam. The placement strategies of ACLD patches are devised using the modal strain energy (MSE) approach. Extensive experimentation studies are conducted by making twenty one separate samples of ACLD/PCLD treated beams with variations in viscoelastic material layer thickness, ACLD/PCLD patch coverage and location of the patch. Effects of key parameters, such as control gain, viscoelastic material thickness, coverage and location variation of ACLD patch on the system loss factor have been investigated. The careful analysis of results from partially covered ACLD treated beam suggests that the maximum damping of the first mode can be achieved by attaching the ACLD patch only up to 50% coverage. It also reveals that with proper choice of the control voltage and thickness, the effective loss factor can be almost doubled. The present study suggests the potential use of parametric studies that establish some guide lines for the extent and placement of the ACLD patches on the cantilevered beam.  相似文献   

19.
多约束的桥梁结构拓扑优化   总被引:27,自引:1,他引:26  
基于ESO (Evolutionary Structural Optimization)的拓扑优化方法,本文提出了一种适应于桥梁结构的拓扑优化方法。引进了两种性能指标公式来确定最佳拓扑设计。另外,为了更有效地尝试改进最终设计的细节,而又不进行更精细有限元网格的完整分析,这里提出了一种精细网络设计方案。再者,结合细啃技术,完成了考虑应力、位移、频率约束的斜拉桥优化设计。通过几种桥梁的设计优化,表明该方法的可应用性、简洁性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号