首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
朱莉 《冶金分析》2010,30(8):58-61
研究了样品溶解方法、铌元素分析线的选择,基体元素和主要共存元素钼、铬、铜、钨、铬、钛对铌测定的影响,并在优化的条件下实现了用电感耦合等离子体原子发射光谱(ICP-AES)法测定镍基合金中铌。结果表明:采用硫酸结合酒石酸溶解样品,根据干扰元素钒和钨的含量不同,择优选用309.418 nm,319.498 nm,316.340 nm谱线作为分析线并结合干扰校正技术可消除镍基合金中共存元素的干扰。使用该法测定了镍基合金标准物质中铌,分析结果与认定值一致,测定结果的相对标准偏差(n=6)在0.5%~6.4%之间。  相似文献   

2.
试验采用盐酸溶解样品,选择Nb 316.340 nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锰桃中铌含量的方法。铌的质量浓度在0~1.00μg/mL范围内线性关系良好,相关系数r为0.999 91,方法检出限为0.015 6μg/g。按照试验方法应用于锰桃中铌的测定,结果的相对标准偏差(RSD,n=11)不大于3.52%,回收率为98.0%~103.5%,且与分光光度法的测定值基本一致。  相似文献   

3.
采用GB/T 6730.10—2014中规定的重量法测定高硅铁矿中二氧化硅时,为回收溶液中小部分可溶性硅,需要反复高温脱水、过滤,导致检测时间较长。为了缩短检测时间,采用重量法-电感耦合等离子体原子发射光谱法联用测定高硅铁矿中二氧化硅。高硅铁矿经酸溶过滤处理,含硅沉淀碱熔、酸化后,试样中大部分硅都形成了硅酸,再经高温脱水,形成的二氧化硅与氢氟酸反应生成四氟化硅气体,通过减少的质量计算硅含量;滤液中少量可溶性硅则采用电感耦合等离子体原子发射光谱(ICP-AES)测定;样品中二氧化硅含量为重量法和ICP-AES测定硅含量(以二氧化硅计)的合量。按照实验方法测定2个高硅铁矿样品中二氧化硅,发现滤液中可溶性硅占比为0.39%~2.0%。按照实验方法测定3个铁矿有证标准样品和7个国际能力验证样品(二氧化硅质量分数为9.595%~50.01%)中二氧化硅,二氧化硅的测定结果与认定值/参考值相符,结果的重现性满足GB/T 6730.10—2014规定。  相似文献   

4.
李芳  张静 《冶金分析》2023,(8):63-68
国家标准GB/T 1549—2008《纤维玻璃化学分析方法》中使用重量法-硅钼蓝分光光度法和氟硅酸钾滴定法测定岩棉中二氧化硅,测定结果准确,但是操作繁琐、耗时较长,还涉及环境污染等问题。实验采用混碱熔融-酸化处理的方式溶解样品,选择Si 251.611 nm为分析谱线,使用基体匹配法配制标准溶液系列以消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定岩棉中二氧化硅的分析方法。二氧化硅在线性范围内校准曲线的线性相关系数r为0.999 9;方法中二氧化硅的检出限为0.049 5%,定量限为0.248%。实验方法应用于岩棉实际样品中二氧化硅含量的测定,结果的相对标准偏差(RSD,n=11)小于1.5%,加标回收率为96%~104%。按实验方法测定岩棉样品中二氧化硅含量,测定结果与国标法结果相吻合。  相似文献   

5.
沈健 《冶金分析》2020,40(5):63-67
铌锰铁是炼钢过程中的一种重要原料,建立测定铌和锰的方法尤为重要。铌锰铁中铌和锰为主元素,含量高,运用化学湿法分析时主元素之间会相互干扰,影响测定的准确性。实验采用盐酸、硝酸、氢氟酸溶解样品,选择Nb 269.706nm为分析线、Mo 281.618nm为内标线;选择Mn 293.305nm为分析线、V 292.401nm为内标线,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铌锰铁中铌和锰的方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰。各待测元素的校准曲线线性相关系数均大于0.999 5。实验方法用于铌锰铁实际样品中铌和锰的测定,铌测定结果的相对标准偏差(RSD,n=11)为0.26%~0.28%;锰测定结果的相对标准偏差(RSD,n=11)为0.29%~0.33%。采用实验方法对铌锰铁实际样品中铌和锰进行测定,测得结果分别与日本标准JIS G 1328—1982中丹宁酸水解重量法测定铌和国标GB/T 5686.1—2008中高氯酸氧化滴定法测定锰的结果基本一致。  相似文献   

6.
多金属矿具有重要的研究和开采价值,测定其中的二氧化硅含量,对于综合判断多金属矿石的化学组成、矿物组成具有重要意义,现有测定方法不能满足快速准确分析多金属矿石中二氧化硅的需求。实验称取0.100 0 g样品于银坩埚中,加1.0 g氢氧化钠,于马弗炉中从室温逐步升温至640 ℃熔融,在塑料烧杯中经水浸取后,将浸取液倒入热的盐酸(1+1)中,并不断搅拌,再将溶液加热至沸,冷却后定容于250 mL容量瓶中,最终控制溶液为5%盐酸酸度。选择Si 251.611 nm作为分析线,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定多金属矿石中二氧化硅的方法。结果表明,二氧化硅的质量浓度在1.00~50.00 μg/mL范围内与其发射强度呈线性关系,线性相关系数为0.999 8;方法检出限为0.01%(质量分数,下同),定量限为0.04%。按照实验方法测定多金属矿石样品中二氧化硅,结果的相对标准偏差(RSD,n=6)小于3%;测定多金属矿有证标准物质中二氧化硅,其相对误差绝对值小于3.1%,测定值与推荐值相吻合。  相似文献   

7.
陶俊 《冶金分析》2009,29(2):1-1
提出了用电感耦合等离子体原子发射光谱法同时测定铌铁中硅,磷,铝,钽,铜,钛元素的分析方法。试样用硝酸和氢氟酸溶解,硫酸冒烟除氟,加入柠檬酸络合钽,防止其水解,然后在选用的最佳光谱线和合适的工作条件下测定。基体铌和铁的干扰采用基体匹配方法消除,被测元素间没有光谱干扰。用本法测定一铌铁标样,测定值与认定值相吻合。  相似文献   

8.
标准方法GB/T 14840—2010采用热磷酸溶解石灰岩中的硅酸盐矿物,分离出游离二氧化硅,再用重量法测定其含量,操作较为繁琐。本文利用热磷酸可溶解硅酸盐矿物而几乎不溶解游离二氧化硅的特性分离出石灰岩中的游离二氧化硅,再以氟硼酸解聚已溶出的硅酸,用致密滤纸过滤,使游离二氧化硅与其他矿物完全分离;然后以热水洗涤沉淀3次,在银坩埚中灰化,用1.5 g氢氧化钠熔融、盐酸浸取后,选取Si 251.611 nm为分析谱线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定试液中的二氧化硅,从而建立了石灰岩中游离二氧化硅的测定方法。方法中二氧化硅的校准曲线线性相关系数为0.999 9,线性范围为0.024%~10.0%;方法检出限为0.008%,定量限为0.024%。按照实验方法测定4个石灰岩标准物质中游离二氧化硅,测定值与认定值的相对误差为-0.18%~0.48%,测定结果的相对标准偏差(RSD,n=12)为1.2%~1.9%。选取4个石灰岩样品,分别采用实验方法和标准方法GB/T 14840—2010中的重量法进行测定,以进行方法比对,二者测定结果基本一致。  相似文献   

9.
60 ℃温度下用硝酸和氢氟酸溶解试样,用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌铁中铌、钛、钽、硅、铝、磷.本方法使用铌铁标样打底,加入适量标准系列溶液建立校准曲线,消除了基体元素对被测元素的影响,同时克服了被测元素落在校准曲线线性范围之外的问题.样品中高含量的铌采用高精密度测量法,提高了测定结果的准确性.  相似文献   

10.
康元  赵婕  潘慧 《冶金分析》2014,34(10):57-60
探究了钛铌合金的溶解及使用电感耦合等离子体原子发射光谱(ICP-AES)测定该合金中高含量铌的方法。实验采用硫酸和氢氟酸溶解钛铌合金,在优化的操作条件下,采用基体匹配法和内标法相结合的方法消除干扰。选择波长Nb 269.7 nm谱线为分析线,钒作为内标元素、268.7 nm波长的谱线作为内标线。方法的线性范围为0.5%~95%,线性相关系数r=0.999 7。用于Ti-45Nb合金中铌的测定,相对标准偏差(n=6)为0.46%,加标回收率在99%~102%之间。方法快速、准确, 可用于钛铌合金中高含量铌的测定。  相似文献   

11.
张宁 《冶金分析》2011,31(5):60-62
提出了一种用电感耦合等离子体原子发射光谱法(ICP-AES)快速测定铜精矿和铅精矿中二氧化硅的方法。采用刚玉坩埚,以过氧化钠为熔剂,在高温下熔融试样,熔块经热水浸取,盐酸酸化处理后进行基体稀释,再加入内标元素Au,采用内标法校正,有效克服了基体效应及仪器波动所产生的影响。本法对二氧化硅的检出限为0.006 3 μg/mL,测定范围(质量分数)为0.02%~10%,用于铜精矿和铅精矿标准物质的测定,测得值与认定值一致,相对标准偏差(RSD)小于3%(n=5)。  相似文献   

12.
建立了用电感耦合等离子体原子发射光谱法(ICP-AES)测定炼锑泡渣中碲的方法。选择波长为214.281 nm的谱线作为碲的分析线,只有La 214.281 nm, V 214.274 nm, Pt 214.250 nm, Nb 214.291 nm和 Re 214.297 nm线有干扰,但炼锑泡渣中La、V、Pt、Nb、Re含量都很低,其影响可以忽略,因此不需要进行预分离,样品用王水溶解后可直接进行ICP-AES测定。考察了仪器工作参数对测定结果的影响,并确定了最佳工作条件:观测高度为15 mm,雾化气流速为0.8 L/min,射频功率为1 300 W。方法线性范围为0.01~100 mg/L,线性相关系数为1.000 0,检出限(3σ)为0.007 2 mg/L,样品测定结果的相对标准偏差(RSD)为0.16%,加标回收率为97%~102%。  相似文献   

13.
孙东亚  何丽雯 《冶金分析》2014,34(10):42-46
研究了用电感耦合等离子体原子发射光谱仪(ICP-AES)测定太阳能级硅(SOG-Si)中硼的方法。试验发现,在110 ℃左右的温度下,用氢氟酸和硝酸的混合溶液作溶剂,试样在PFA烧杯中能较快溶解,且在溶样时添加0.3 mL甘露醇,可有效抑制硼的损失。在1000级洁净室中,用金属氧化物半导体(MOS)级试剂溶解电子级硅(EG-Si),可控制样品空白中硼元素含量小于1 μg/L,并能抑制部分基体效应。在仪器最佳工作状态下,选取B 182.641 nm作为分析谱线,方法的检出限为18.10 μg/L,回收率在92%~108%之间,相对标准偏差(RSD,n=11)不大于 7.2% 。样品中硼的测定结果与电感耦合等离子体质谱(ICP-MS)法及辉光放电质谱(GDMS)法进行了比对,结果吻合。  相似文献   

14.
杨丽  王金阳  张庸 《冶金分析》2013,33(6):63-66
探讨了电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基钎焊料中铬和硅的分析条件。试样经王水和氢氟酸混合酸溶解,选择267.716(125) nm和251.612(133) nm的光谱线分别作为铬和硅的分析线,并采用基体匹配法降低了基体效应,ICP-AES测定了镍基钎焊料中铬和硅含量。实际样品中铬和硅的测定结果与过硫酸铵氧化滴定法和高氯酸脱水法相符,铬和硅的相对标准偏差(n=6)分别为0.55%~0.73%和0.71%~1.0%,加标回收率分别为100%~101%和99%~100%。  相似文献   

15.
李新丽  唐健  朱鸭梅 《冶金分析》2011,31(10):38-40
介绍了利用电感耦合等离子体原子发射光谱(ICP-AES)测定钢铁合金中全硅的方法。样品用盐酸和硝酸溶解,不溶物经过滤、干燥、灰化和灼烧后,在950 ℃温度下用碳酸钠和硼酸混合熔剂熔融,熔块溶解于滤液中,在优化的工作条件下采用ICP-AES法测定溶液中全硅量。大量的铁、钠、硼产生基体干扰,但可以用标准加入法消除。本法已用于含硅量不同的标准样品的测定,得到的测定值与认定值相符,用于钢铁样品中全硅的测定,其结果与国家标准方法-还原型硅钼酸盐分光光度法的测定结果相符。  相似文献   

16.
含稀土和氟炉渣样品在低温下用盐酸溶解,过滤后残渣用无水碳酸钠和硼酸的混合熔剂熔融,以滤液浸取熔块,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了浸取夜中钙、镁、铝、硅、铁、磷、钡、钒、钛、锰含量。考察了主量元素钙、铝、硅、铁及共存元素间的干扰情况,对影响测定的各种因素进行了较为详细的研究,确定了仪器的最佳工作参数,选择了合适的分析谱线。炉渣中氧化钙、氧化镁等10种组分在一定的浓度范围内有良好线性关系,相关系数均在0.999以上。各组分的测定范围如下: CaO为 1.00%~50.00%,MgO 为1.00%~25.00%,Al2O3 为0.10%~40.00%,SiO2 为1.00%~40.00%,TFe 为0.05%~30.00%,MnO为 0.001%~15.00%,TiO2为 0.003%~5.00%,V2O5 为0.05%~5.00%,BaO为 0.001%~10.00%,P2O5 为0.01%~5.00%。对含稀土和氟的高炉渣、转炉渣、平炉渣、电炉渣等冶金炉渣标准样品进行了测定,测定值与认定值相符,测定结果的相对标准偏差在0.38%~3.6%之间。  相似文献   

17.
成勇  袁金红  彭慧仙  魏芳 《冶金分析》2014,34(11):18-23
冶炼钒钛磁铁矿时加入一种作为示踪剂的碳酸钡以标定出铁过程中铁水所夹带的高炉渣。为准确测定钡的含量,在试验的基础上,建立了用电感耦合等离子体原子发射光谱法(ICP-AES)测定钒钛高炉渣中钡含量的方法。以氢氟酸、盐酸、硝酸混合试剂消解样品,冒高氯酸烟驱赶残余氢氟酸等试剂,盐酸溶解盐类后直接采用ICP-AES测定钡的含量。系统考察了钒钛高炉渣复杂共存体系所导致的基体效应、光谱干扰、背景噪音等干扰因素的影响,优选了灵敏度适宜的钡分析谱线(Ba 230.424 nm、233.527 nm、413.066 nm、455.403 nm、493.409 nm)、检测积分与背景校正区域以及ICP光谱仪工作参数。试验结果表明,在分析线扫描窗口内,钒、钛、铁、钙、镁、铝等主要共存基体元素均不产生谱峰,并且与试剂空白信号基线重叠一致,表明钒钛高渣炉中基体组分对测定钡不产生基体效应、光谱干扰等影响,因此实验方法未采用基体匹配校正措施,直接以钡元素标准溶液绘制校准曲线。对于Ba 230.424 nm、233.527 nm、413.066 nm、455.403 nm、493.409 nm分析线,方法的测定下限在0.000 2%~0.001 0%范围,背景等效浓度在0.000 3%~0.000 5%范围,相对标准偏差(RSD)小于2.5%,加标回收率在93%~102%之间。方法适用于质量分数为0.005%~2.50%钡的测定。  相似文献   

18.
在常温下用HNO3和HF溶解样品,采用标准加入法消除样品基体的干扰,通过电感耦合等离子体发射光谱仪的专利分析软件选择适当的背景点扣除背景,解决了传统的标准加入法只能用于数量少的样品分析和不能消除背景干扰的缺点。通过编辑分析程序自动绘制工作曲线和计算结果,采用钇内标加入法提高了方法的稳定性,实现了采用电感耦合等离子体原子发射光谱法(ICP-AES)铌铁中硅的测定。考察并选择了电感耦合等离子体光谱仪的RF功率、雾化气流量、辅助气流量等最佳分析参数。对一铌铁试样中硅进行10次测定,测定结果的相对标准偏差为2.4%,标样的测定值与认定值相符。  相似文献   

19.
钒钛磁铁矿中因含量较低而不能被有效利用的Sc,在采用熔盐氯化法提取Ti时被富集于熔盐废渣中,为配合回收熔盐废渣中宝贵的Sc、Ti资源,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定熔盐废渣中0.001%~0.5% Sc和0.25%~5.0%Ti的方法。采用HF、H2SO4溶解熔盐废渣,实验优化了其配比、用量和反应条件,确保样品被快速溶解完全,并且通过SiF4挥发逸出、CaSO4沉淀分离等方式尽量除去SiO2、CaO等高含量基体组分,以及采用形成TiOSO4络合物离子的方式解决高浓度Ti4+在低酸度介质下易水解的问题,从而减少样品测试溶液的酸度及其共存组分构成,有效降低基体效应等影响;重点试验了试液中共存组分的光谱干扰、连续背景叠加、基体效应等干扰因素的影响,通过优选待测元素的分析谱线及其检测积分和背景校正区域以及光谱仪工作参数等,并且采用同步背景校正法消除共存基体组分的影响。校准曲线中Sc线性范围为0.001%~0.5%,线性相关系数为0.999 6;Ti的线性范围为0.25%~5.0%,线性相关系数为0.999 2;方法检出限为0.000 01%Sc和0.000 38%Ti;元素的含量水平为0.01%~0.1%(质量分数)时结果的相对标准偏差(RSD,n=8)小于3%,含量水平为1.0%~5.0%(质量分数)时结果的相对标准偏差(RSD,n=8)小于1%;加标回收率为92%~109%。按照实验方法测定4个氯化提钛熔盐废渣样品,分别与ICP-AES测定稀土矿石中Sc(GB/T 17417.2—2010)和硫酸铁铵滴定法测定铁矿石中Ti(GB/T 6730.23—2006)进行比对,结果相一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号