首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
汞和砷是土壤环境质量监测中的管控元素,由于两者含量差异较大,使用氢化物发生-原子荧光光谱法难以同时准确测定,而使用电感耦合等离子体原子发射光谱法(ICP-AES)测定砷、汞时有灵敏度偏低的问题。试验探讨了自制简易氢化物发生装置与电感耦合等离子体原子发射光谱仪联用同时测定土壤中汞和砷。使用王水(1+1)消解样品,保持样品溶液的酸度为15%,还原剂为15 g/L硼氢化钾溶液;设置ICP-AES最佳工作条件为入射功率1 450 W、蠕动泵转速1.7 mL/min、等离子体气流量16 L/min、雾化气流量0.45 L/min。方法中汞和砷的线性范围分别为0.50~10.0μg/L和5.00~100μg/L,线性相关系数均为0.999 8,检出限分别为0.016μg/g和0.12μg/g,定量限分别为0.064μg/g和0.48μg/g。按照实验方法测定土壤标准物质和实际土壤样品中汞和砷,土壤标准物质的测定值与认定值相一致;实际样品测定结果的相对标准偏差(RSD,n=6)为3.1%~4.8%。同时采用实验方法和原子荧光光谱法对实际土壤样品中汞和砷进行测定,并通过t检验法检验显示两种方法测定结果...  相似文献   

2.
建立了测定进口铜锍样品中砷、汞含量的氢化物发生原子荧光光谱法。在铜锍试样中加入王水和氢氟酸,经微波消解后稀释,消解液中加入硫脲-抗坏血酸预还原,加硼氢化钾使砷和汞生成硼氢化物,用原子荧光光谱法测定砷和汞含量。铜、铁、硫等对待测元素基体效应不显著。在选定条件下,砷和汞的检出限分别为0.003 9 μg/L和0.060 8 μg/L,样品的加标回收率在95 %~123 %之间,砷和汞的相对标准偏差分别为0.56%和2.0%(n=6),方法可用于大批铜锍样品中砷和汞的测定。  相似文献   

3.
以盐酸硝酸(5+3)的混酸为消解液,微波消解钨矿样品,然后采用氢化物发生原子荧光光谱法(HG-AFS)同时测定钨矿中砷和汞。对微波消解程序进行优化,并探讨了共存离子对测定砷、汞的干扰。由于钨基体在酸性消解液中形成钨酸沉淀,而实际样品中其他共存离子浓度均低于允许浓度,因此,基体和共存元素对待测元素几乎没有影响。砷、汞的测定下限分别为0.20 mg/kg和0.10 mg/kg。选择不同钨矿石进行精密度考察,相对标准偏差(RSD,n=6)在1.3%~6.2%范围内;加标回收试验表明,回收率在82%~101%之间。对钨矿石标准样品进行分析,砷的测定值与认定值一致。  相似文献   

4.
建立用水浴加王水消解-氢化物发生双道原子荧光光谱法同时测定钛白粉中汞和可溶砷的方法。实验表明,本方法砷检出限为0.000 5 mg/kg和汞的检出限为0.000 1 mg/kg,实际样品中汞和可溶砷测得结果的相对标准偏差(RSD%,n=11)分别为5.4%和8.1%。方法用于钛白粉实际样品测定,测得结果与电感耦合等离子体质谱法(ICP-MS)测定结果相符,汞和砷加标回收率为89.9%和93.4%。  相似文献   

5.
通常锡矿石中砷、锑含量的检测方法都是以分光光度法为主,实验以盐酸-硝酸混合酸微波消解样品,建立了氢化物发生-原子荧光光谱法测定锡矿石中砷和锑的新方法。实验表明:以8 mL盐酸-硝酸(5+3)混酸为溶剂,采用微波消解样品,在盐酸浓度约为0.96 mol/L,硫脲和抗坏血酸的质量浓度均为10 g/L时,以HCl(1+9)作为载流液,20 g/L硼氢化钾溶液为上机还原剂进行测定,以砷和锑的荧光强度与其对应的质量浓度绘制校准曲线,线性相关系数均不小于0.999 8。砷和锑的方法检出限分别为0.044 2 μg/L和0.020 4 μg/L。干扰试验表明,锡矿石样品中的共存元素不干扰测定。采用实验方法对锡矿石实际样品中砷和锑进行测定,测得结果的相对标准偏差(RSD,n=6)分别为1.1%~1.3%和0.99%~1.4%,加标回收率分别为99%~104%和98%~104%。将实验方法应用于锡矿石标准物质的测定,测定值与认定值基本一致。  相似文献   

6.
建立了聚丙烯塑料的微波消解方法,并采用电感耦合等离子体原子发射光谱法测定了铅、镉、汞和铬的含量。实验结果表明:采用5.0 mL硝酸和2.0 mL过氧化氢的混合酸,通过分段升温,并在190℃下消解30 min,可使样品完全分解,得到精密度较好的分析结果。实验测得铅、镉、汞和铬的检出限分别为5.20 mg/kg,0.05 mg/kg,5.00 mg/kg,3.78 mg/kg。采用本方法测定ERM-EC680聚丙烯塑料中的铅、镉、汞和铬,测定值与认定值相符。对聚丙烯塑料的铅、镉、汞和铬进行8次测定,得到相对标  相似文献   

7.
微波溶样原子荧光法测定化探样品中的砷、锑、铋和汞   总被引:1,自引:0,他引:1  
王云玲  武洋  杜少文  刚绪军 《黄金》2007,28(1):59-60
采用微波消解样品预处理技术和原子荧光光谱法,测定了化探样品中砷、锑、铋和汞的含量.建立了最佳微波消解程序,最终确定了4种元素连续测定的最佳实验条件;可以一次溶解样品,在同一仪器上用基本相同的工作条件同时测定砷、锑、铋和汞,RSD<3.82%.该方法适用于化探样品中w(As) =(0.5~100)×10-6、w(Sb)=(0.05~10)×10-6、w(Bi)=(0.05~5)×10-6和w(Hg)=(0.005~5)×10-6的连续测定.  相似文献   

8.
苏明跃  杨丽飞  郭芬 《冶金分析》2010,30(12):39-43
使用硝酸、盐酸、氢氟酸体系在高压密封微波消解器中完全消解锰矿样品,采用顺序注射-氢化物发生原子荧光光谱法检测样品中砷、汞含量。讨论了微波消解酸体系及用量的选择,研究了硼氢化钾浓度、载气流量、屏蔽气流量、溶液酸介质、载流溶液、溶液酸碱比例、样品中的主要基体元素等因素对砷、汞检测的影响,并确立了适宜的检测条件。砷浓度在0~100μg/L范围内与荧光强度呈良好的线性关系,砷的检出限为0.02μg/L;汞浓度在0~10μg/L范围内与荧光强度呈良好的线性关系,汞的检出限为0.05μg/L。采用本方法检测锰矿中砷、汞,砷的回收率可达105%~112%,相对标准偏差小于2.5%;测汞回收率可达91%~110%,相对标准偏差小于4.4%。使用该法分析参考物质和实际样品,分析结果与认定值和其他方法测定值一致。  相似文献   

9.
成勇 《冶金分析》2012,32(3):59-63
以HF、HNO3和HCl的混酸(VHF∶VHNO3∶VHCl=1∶6∶3)为消解试剂,采取斜坡升温方式,在优化的消解程序下对样品进行微波消解,消解液以水定容后采用电感耦合等离子体原子发射光谱法(ICP AES)测定Si、Al、Mn、P、Cu、Co、Cr、Ni、V、As、Cd、Pb、Ca、Mg等14种杂质元素含量。考察了样品的最佳消解条件和光谱干扰情况。结果表明,样品采用以5 min升温至130 ℃并保持3 min,再以5 min升温至200 ℃并保持10 min的消解程序消解的效果最好;选择合适的光谱线作为被测元素的分析线并采用基体匹配及同步背景校正法可以消除钛基体影响和谱线的重叠干扰。方法的检出限为5 μg/L(Mg)~60 μg/L(Si),背景等效浓度为4 μg/L(Mg)~55 μg/L(Si),用于测定富钛料中上述元素, 相对标准偏差(RSD,n=8)≤65%,加标回收率在95%~108%之间。  相似文献   

10.
采用硝酸分解样品,用聚环氧琥珀酸(PESA)掩蔽基体,建立了氢化物发生原子荧光光谱法(HG-AFS)测定铅锭中砷和汞的简单方法。研究了溶样方法和PESA用量对测定结果的影响,优化了氢化物发生条件及仪器的工作参数,考察了共存元素可能引起的干扰。实验表明,0.1 g铅锭溶解后加入2.0 mL PESA可以有效地掩蔽基体元素Pb,铅锭中的Ca、Cu、Sb和Sn不干扰As和Hg的测定。砷和汞的方法检出限分别为0.070 μg/L和0.011 μg/L。将方法应用于实际样品分析,砷和汞的相对标准偏差(RSD,n=5)分别在1.0%~2.0%和1.3%~1.9%之间,加标回收率分别为96%~102%和99%~103%。  相似文献   

11.
将微波消解技术与电感耦合等离子体质谱法相结合测定了煤炭中铅、镉、铬、砷、汞、铍6种元素。以硝酸和氢氟酸作为消解试剂,采用高压密闭微波消解仪及功率控制梯度消解模式,在190 ℃温度、38 bar压力,0.3 bar/s升压速率的条件下消解样品。样品消解完全后加入一定量硼酸,除去过量的氢氟酸以保护仪器。测定时,选择202Hg、208Pb 9Be、75As、53Cr和114Cd作为测定同位素,同量异位素的干扰采用无干扰元素校正方式来消除,基体效应产生的信号漂移采用103Rh作为内标进行校正。方法应用于SARM 19煤和GBW07430土壤有证标准物质的分析,测定值与认定值吻合,相对标准偏差(RSD,n=8)在1.5%~5.6%范围,回收率在88%~110%之间。  相似文献   

12.
谢琰  曾泽  卢琪 《冶金分析》2006,26(2):1-1
试样经微波溶解,用抗坏血酸和硫脲作还原剂,氢化物发生原子荧光光谱法测定轻烧镁和水镁石中砷和汞。镁对测定的影响可通过基体匹配方法避免,样品中主要杂质和痕量元素无干扰。砷和汞的工作曲线线性范围分别为0~100 ng/mL和0~10 ng/mL,检出限分别为0.7 ng/mL和0.02 ng/mL。样品中砷和汞加标回收率分别为101.4%~107.1%和104.1%~108.5%。方法已用于轻烧镁和水镁石中砷和汞的测定。  相似文献   

13.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。  相似文献   

14.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。  相似文献   

15.
以硝酸和磷酸(V (HNO3)∶V(H3PO4)=5∶1)作为消解试剂,采取高压密闭微波加热方法对钨钴或钨镍类钨基硬质合金样品进行消解,消解液用水定容后直接以电感耦合等离子体原子发射光谱法(ICP-AES)测定0.005%~10% Co、Ni和0.005%~1% Fe、Nb、Ta、V、Cr、Mo的含量。考察了消解试剂中的硝酸和磷酸量对试样消解的影响以及微波控制参数等最佳消解条件,建立了微波消解-无机试剂络合基体钨的样品消解方法,从而避免了因钨酸沉淀析出而导致部分待测元素损失和使用有机络合剂对光谱测定的干扰影响。实验结果表明:采用以5 min升温至130 ℃并保持5 min,再以5 min升温至190 ℃并保持15 min的消解程序,样品的消解效果较好。试验通过优选元素分析谱线,基体匹配和同步背景校正法消除了高钨基体的影响和光谱干扰,确保了方法的可靠性。背景等效浓度值从5 μg/L (Nb)至18 μg/L(Fe),元素检出限从4 μg/L (Nb)至13 μg/L (Fe)。方法用于钨基硬质合金样品中上述合金或杂质元素的测定,RSD<3%,加标回收率在97%~104%之间,测定结果与国家标准方法检测结果对照一致。  相似文献   

16.
无需进行样品消化处理,铜精矿粉末样品在253.7 nm处用直接测汞仪进行分析,5~6 min即可获取结果。为减少样品中汞对仪器的毒害同时保证测定结果的准确,样品取样量选择为0.15 g;同时,采用单个测定方式可减少样品舟存在的记忆效应。方法的检出限为0.2 μg/kg。对3个不同含量范围铜精矿国家标准物质中的汞进行测定,结果同国标法的测定结果一致,相对标准偏差≤4.7%,回收率为98%~102%。  相似文献   

17.
使用HNO3-HF混合酸体系微波消解煤飞灰样品,建立了电感耦合等离子体质谱法(ICP-MS)测定煤飞灰中14种痕量元素含量的分析方法。样品微波消解的程序为:0.2 g样品中加入10 mL HNO3和5 mL HF,5 min加热到110 ℃保持5 min、5 min升温到150 ℃保持5 min、5 min升至190 ℃恒温30 min。实验对较高浓度元素Be、Co、Cr、Cu、Mn、Mo、Ni、Pb、Sn、V和Zn采取稀释10倍、降低总溶解性固体(TDS)含量后以外标法进行测定,Cd、Sb、Tl等低含量元素则采用标准加入法以消除基体干扰;方法检出限为0.001~0.04 mg/kg。将实验方法应用于煤飞灰标准物质SRM 1633c中11种金属元素(Be、Cd、Co、Cr、Cu、Mn、Ni、Pb、Sb、V、Zn)的测定,结果与认定值基本一致,相对标准偏差(RSD,n=6)为0.3%~3.6%,加标回收率在83%~112%之间。采用实验方法测定煤飞灰实际样品的结果与12个实验室采用电感耦合等离子体原子发射光谱法(ICP-AES)、ICP-MS、原子吸收光谱法(AAS)、X射线荧光光谱法(XRF)和滴定法等其他方法测得结果的平均值对比,经t检验统计表明无显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号