首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newborn of two locally sympatric species of water snakes,Nerodia fasciata andN. erythrogaster, were exposed to skin extracts of frequently ingested prey. In southern Louisiana, fish account for 78% of the diet of adultNerodia fasciata and about 15% forNerodia erythrogaster. Anurans comprise most of the remainder of the diets of these water snakes. Responses of naive individuals were compared to the chemoreceptive response profiles of groups of snakes reared on limited diets of fish and/or frogs. All snakes were tested seven times over a nine-month period and ontogenetic changes were apparent. NewbornNerodia fasciata have a strong chemoreceptive response for fish extract that remains unchanged by early dietary restrictions for the first six months of life. After that time their responses are more variable and can be altered by recent feeding experience. In southern Louisiana, this species is the least specialized water snake, an observation supported by these laboratory results. While newbornN. erythrogaster did not respond preferentially to any of the prey extracts, a significant response rate for fish extract is established by two months of age that persists for several months regardless of dietary restrictions. A subsequent shift of the response to frog extract at eight months of age regardless of diet may reflect a maturational process. Field studies are in agreement with these results and support the notion of ontogenetic changes related to predator size and age. This is the first demonstration of an ontogenetic change in chemoreceptive response that is not related to dietary experience.  相似文献   

2.
Materials previously shown to elicit increased tongue-flicking and prey attack in garter snakes (Thamnophis sirtalis) were isolated from both earthworms (Lumbricus terrestris) and fish (Pimephales promelas). Both high- and low-molecular-weight components from earthworms and fish stimulated attacks and increased tongue-flicking in previously unfed neonate garter snakes relative to distilled water controls. Earthworm collagen was also effective, but even concentrated fractions were less effective than raw extract. Conflicting reports on the effectiveness of collagen suggest that the salient chemical(s) is a smaller molecule tightly bound to collagen and resisting standard purification methods.  相似文献   

3.
Prey species show diverse antipredator responses to chemical cues signaling predation threat. Among terrestrial vertebrates, the red-backed salamander, Plethodon cinereus, is an important species in the study of these chemical defenses. During the day and early evening, this species avoids rinses from garter snakes, Thamnophis sirtalis, independent of snake diet, but late at night, avoids only those rinses from garter snakes that have recently eaten P. cinereus. We tested whether the selective, late-night response requires the ingestion or injury of salamanders. In three experiments, we tested P. cinereus for their responses to separate or combined rinses from salamanders (undisturbed, distressed, and injured P. cinereus) and snakes (unfed, earthworm fed, and salamander-fed T. sirtalis). When paired against a water control, only rinses from salamander-fed snakes were avoided. When salamander treatments (undisturbed or distressed) were combined with the snake treatments (unfed or earthworm-fed) and tested against a water control, the combinations elicited avoidance. When selected treatments were paired against the standard rinse from salamander-fed snakes, only the combined rinses from salamanders and snakes nullified the avoidance response to the standard rinse. These data reveal a prey defense mechanism involving chemical elements from both the predator and prey that does not require injury or ingestion of the prey in the formation of the cue.  相似文献   

4.
The brown tree snake (Boiga irregularis) is an exotic pest species on Pacific islands, most notably on Guam where it has caused considerable ecological and economic damage. On Guam, the snake commonly associates with people and can be found near or in human habitations. Bites are common, approximately 1 of 1200 emergency room visits to Guam hospitals were reported to be the result of B. irregularis bites; 80% of these victims were attacked while sleeping. Most of the attacks occurred on fingers and hands and the attacks appeared to be predatory, rather than defensive, in nature. In order to characterize the mechanism releasing this unusual behavior, we measured the predatory response of B. irregularis to chemical stimuli from humans and controls using a lab population that originated from Guam and a wild population from the species' native range in Queensland, Australia. To quantify behavior we measured the proportion of snakes displaying predatory behavior to each of the stimuli, the latency to attack, and the number of tongue-flicks displayed. We quantified predatory behavior using the tongue-flick attack score for repeated measures [TFAS(R)], a common method for quantifying predatory behavior in squamate reptiles. Captive brown tree snakes responded to human skin stimuli with feeding behavior, including predatory attacks, at the same frequency as they did to prey stimuli derived from mice, while never responding to controls with such behavior. Captive snakes also responded to human skin stimuli and prey stimuli with significantly higher TFAS(R) scores than to controls, although there were no differences between the human and mouse stimuli. Wild-caught animals in Australia also responded with predatory attacks to human skin stimuli, while not showing predatory behavior to a blank control and with higher TFAS(R) scores to human skin stimuli than to the control. As B. irregularis is a generalized predator that relies heavily on chemical signals to recognize prey, we hypothesize that the snakes recognize compounds on human skin that may be shared with other prey.  相似文献   

5.
Monitor lizards prey on snakes. Conversely, venomous snakes prey on juvenile monitor lizards. Immediately after hatching, monitor lizards are naive to all prey items, thus correct assessment of snake prey is paramount for survival. Experiments were conducted to determine how hatchling monitor lizards (Varanus albigularis) with no previous exposure to snakes reacted to sympatric venomous and nonvenomous snakes. Hatchling lizards attacked harmless snakes, but avoided venomous species. Lizards readily accepted meat from skinned snakes, regardless of species. When invertebrate prey covered with skin segments from venomous snakes were restrained from moving, they were usually investigated by tongue-flicking and rejected. Unrestrained skin-covered prey, however, were generally attacked and eaten without prior evaluation by tongue-flicking. Attack was inhibited in trials in which unrestrained prey were tongue-flicked, suggesting that chemical cues contained in snake skins mediate avoidance of venomous snakes. Selection for the ability to perceive snake integumental chemicals may be especially strong in species that both consume and are consumed by snakes.  相似文献   

6.
Postlarval lobsters (4th–7th stage) exclusively fed frozen brine shrimp (Artemia saline) were assayed for food-search response to extracts and metabolites from four common prey: soft clams (Mya arenaria), blue mussels (Mytilus edulis), rock crabs (Cancer irroratus), and sea stars (Asterias vulgaris). Concentrations of soluble primary amines, protein, and ammonia in prey tissues and metabolites were determined. No significant responses were observed for any prey metabolites diluted to 1 and 10%, while onlyA. vulgaris evoked a significant response at full strength, suggesting that predatorily naive lobsters have yet to develop more pronounced chemosensory responses shown by field-collected lobsters. Removal of protein with retention of small-molecular-weight polar molecules did not appear to affect response to prey extracts. EC50s, as micromoles per liter amines, computed from prey extract dose-response curves indicate differences per unit amine between prey extracts, withA. vulgaris extract more potent as an attractant than either bivalve extract.C. irroratus extract was equally attractive as the other three extracts. Ammonia levels excreted into seawater over 3 hr were similar for all prey species, while soluble primary amines and proteins were undetectable. Ammonia and protein per gram whole prey varied significantly between extracts of prey species, while primary amines were similar. Lobsters may be attracted preferentially to carrion species with higher concentrations of amines and/or higher potency of attractants per unit amine.  相似文献   

7.
Previous studies of chemoreceptive behavior in vipers suggest that snakes focus on the scent of envenomated tissue to track their prey following envenomation. Other studies have indicated a correlation between qualitative differences in venom biochemistry and geographic variation in diet. The North American copperhead (Agkistrodon contortrix) varies geographically in diet and venom biochemistry; snakes were collected from three populations (Kansas, Texas, and Louisiana) that are known to have different prey preferences. Behavioral experiments were conducted to assess whether copperheads preferred envenomated prey more than nonenvenomated prey, as do other species of vipers studied thus far. Additional experiments tested the ability of copperheads to distinguish between envenomated prey from different geographic populations, and between geographic populations of copperheads and two other species of viper. Results indicated that copperheads prefer envenomated prey to nonenvenomated prey. In envenomated-prey discrimination experiments, copperheads distinguished between envenomated prey from different geographic populations, and some snakes distinguished envenomated prey of A. contortrix from those of A. piscivorus and Sistrurus catenatus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to study the variation of venom biochemistry in this species and two other taxa (A. piscivorus and S. catenatus), and confirmed intraspecific and interspecific variation of venom proteins. Relative potency of the venom from different populations as indicated by time to immobilization experiments was in the order: Louisiana >Texas > Kansas. The relative potency of the venom from each population matched the order of preference in the chemoreception experiments. These results suggest that chemoreception is sensitive to subtle differences in venom biochemistry and may reflect adaptation to improve efficiency of finding envenomated prey.  相似文献   

8.
Young corn snakes,Elaphe guttata, were tested for responses to chemicals from heterospecific snakes. Corn snakes exhibited more tongue-flicks to swabs freshly rubbed against the skin of an ophiophagous kingsnake,Lampropeltis getulus, than to blank swabs. Responses toL. getulus and a nonophiophagous western plains garter snake,Thamnophis radix haydeni, did not differ significantly. Corn snakes exhibited more tongue-flicks to swabs treated with chloroform extracts of the shed skins ofL. getulus; an ophiophagous eastern coachwhip,Masticophis flagellum; and a nonophiophagous gray ratsnake,Elaphe obsoleta, than to blank swabs, but they did not discriminate between ophiophagous and nonophiophagous species in every case. Corn snakes, when offered shelters containing bedding from the home cages of a nonophiophagous water snake,Nerodia erythrogaster, an occasionally ophiophagous water moccasin,Agkistrodon pisdvorus; orL. getulus and untreated bedding, failed to reside under snake-scented shelters at a rate significantly different from that expected by chance. The responses of corn snakes are compared with those reported for other snakes presented with heterospecific snake chemicals.  相似文献   

9.
Sampling environmental chemicals to reveal prey and predators and to provide information about conspecifics is highly developed in lizards. Actively foraging lizards can discriminate between prey chemicals and control stimuli, but ambush foragers do not exhibit prey chemical discrimination. Recent experiments on a few species of herbivorous lizards have also demonstrated an ability to identify plant food chemicals. We studied chemosensory responses to chemicals from prey and palatable plants in two species of actively foraging, insectivorous lizards. Both the lacertid Takydromus sexlineatus and the teiid Cnemidophorus gularis exhibited strong responses to prey chemicals, but not to plant chemicals. These findings increase confidence in the relationship between prey chemical discrimination and foraging mode, which is based on data for very few species per family. They also provide data showing that actively foraging insectivores in two families do not respond strongly to plant cues. Such information is essential for eventual comparative studies of the relationship between plant diet and responses to food chemicals. The traditional method of presenting stimuli by using hand-held cotton swabs worked well for T. sexlineatus but could not be used for C. gularis due to repeated escape attempts. When stimuli were presented to C. gularis on ceramic tiles and no experimenter was visible, the lizards responded readily. Presentation of stimuli on tiles in the absence of a visible experimenter may be a valuable approach to study of food chemical discrimination by active foragers in which antipredatory behavior interferes with responses to swabs.  相似文献   

10.
Four litters of king snakes (Lampropeltis getulus), a snake-eating species, were tested for responses to chemicals from colubrid and crotaline snakes. King snakes presented with swabs rubbed against the dorsal skin of living snakes and with swabs treated with methylene chloride extracts of shed snake skins tongue-flicked more to swabs from a northern copperhead (Agkistrodon contortrix), a crotaline, than to swabs from some colubrid snakes or to blank swabs. Six out of 10 king snakes in one litter attacked and attempted to ingest swabs treated with snake skin chemicals, implicating these chemicals as feeding stimuli for these ophiophagous snakes. Ingestively naive king snakes presented with plain air and snake odors in an olfactometer tongue-flicked more to snake odors. This study and others suggest that crotaline and colubrid snakes can be distinguished by chemical cues.  相似文献   

11.
We studied two populations of damselfly larvae (Enallagma boreale): one population cooccurred with a predatory fish (northern pike, Esox lucius); the other did not. Damselflies that cooccurred with pike adopted antipredator behavior (reduced activity) in response to chemical stimuli from injured conspecifics, and to chemical stimuli from pike, relative to a distilled water control. Damselflies from an area where pike do not occur responded only to chemical stimuli from injured conspecifics. In a second set of experiments, we conditioned pike-naive damselflies to recognize and respond to chemical stimuli from pike with antipredator behavior. Damselfly larvae that were previously unresponsive to pike stimuli learned to recognize pike stimuli after a single exposure to stimuli from pike and injured damselflies or pike and injured fathead minnows (Pimephales promelas). The response to injured fathead minnows was not a general response to injured fish because damselfly larvae did not respond to chemical stimuli from injured swordtails (Xiphophorus helleri), an allopatric fish. Taken together, these data suggest a flexible learning program that allows damselfly larvae to rapidly acquire the ability to recognize local predation risk based on chemical stimuli from predators, conspecifics, and heterospecific members of their prey guild.  相似文献   

12.
A potent proteinaceous chemoattractant, eliciting prey attack by checkered garter snakes (Thamnophis marcianus) was isolated from aqueous washes of the common frogRana temporaria and purified by preparative continuous-elution electrophoresis. The biological activity of the frog crude extract or of the purified chemoattractive protein, measured by a snake bioassay, was unaffected by freezing, lyophilization, or dialysis but was lost after proteolytic digestion. The purified chemoattractant is glycosylated, has an apparent molecular mass of 24 kDa, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE), and a pI of 4.8. It gave one spot in two-dimensional electrophoresis. The bioassay showed that this protein is highly attractive to snakes. The lowest concentration yielding positive responses in the snake bioassay was approximately 25 µg/ml. These results suggest that a water-soluble Mr 24 kDa glycoprotein molecule produced by the common frog may be a vomeronasal stimulus used by checkered garter snakes for prey recognition.  相似文献   

13.
Materials eliciting increased tongue flicking and prey attack in garter snakes were isolated from both earthworm and fish prey. New extraction methods based on chloroform-methanol mixtures are valuable adjuncts to the more typical aqueous preparations. Both high- and low-molecular weight components from earthworms and fish were active. The similarity between the active chemicals in these two classes of prey was established using several methods of analysis. These included chromatography, carbohydrate and amino acid analyses, and nuclear magnetic resonance.  相似文献   

14.
Chemosensory responses to food are correlated with geographic variation in diet of some colubrid snakes, but the influence of diet on chemosensory behavior has not been established generally in snakes or lizards. Most lizards are generalist predators of small animals, making it difficult to study effects of diet, but herbivory and omnivory have evolved in several lineages, providing an excellent opportunity to study the effects of dietary change on chemosensory behavior. Based on ecological considerations, I argue that inclusion of plants in the diet of lizards that evolved from ambush foragers lacking prey chemical discrimination might be expected to evolve responsiveness to plant food chemicals. If animal prey also are retained in the diet, then responsiveness to prey chemicals should evolve as well. I experimentally studied tongue-flicking and biting responses by omnivorous geckos of the genus Rhacodactylus to chemical stimuli from plant and animal foods and control substances presented on cotton swabs. The lizards exhibited significantly greater responses to plant stimuli than to control stimuli. One of two species tested responded strongly to cricket chemicals, but the other showed no significant response to mouse surface chemical stimuli. The results support the hypothesis that dietary shifts induce corresponding changes in chemosensory response, but establishment of correlated evolution between diet and food chemical discriminations in lizards will require study of many herbivores/omnivores and insectivores as controls.  相似文献   

15.
The ability of hatchling pine snakes (Pituophis melanoleucus) to select and follow or avoid chemical odors of prey (mice,Mus musculus) on a shavings and paper substrate was investigated in Y-maze experiments, as a function of incubation temperature and experience. Incubation temperature affected behavior in the maze, and the maze choices of naive snakes, but not of snakes that had already eaten a mouse. The data indicate that snakes that have eaten, preferentially enter the arm bearing chemical stimuli from mice, whereas those that have not eaten show no preference.  相似文献   

16.
A hypothesis that size selection of prey by predators elicits size-specific responses from prey was examined. Freshwater snails, Pomacea canaliculata, ages 1, 3, 7, 15, 30, or 60 days, were given an extract of 3-day-old snails, and 3-day-old snails were given extracts of snails of the other ages or eggs. Snails 15 days or younger crawled out of the water in response to the 3-day-old snail extract, but older ones did not. The 3-day-old snails responded to the extracts of snails of all examined ages, but not to the extract of eggs. Snails of four size classes, 3-days-old, small (shell lengths 8–12 mm), medium (13–20 mm), and large (>28 mm) were given extracts of snails of each of these four classes. The 3-day-old snails crawled out of the water in response to the extract of 3-day-old snails, but showed a lower or no response to other extracts. Larger snails buried themselves in the soil in response to the extract of snails of similar sizes. These responses are discussed in the context of the evolution of the snail's avoidance behavior in response to the size-dependent prey choice by the predator.  相似文献   

17.
The scent gland secretions of snakes are thought to repel predators, but few predator species have been tested for responses to these exudates. Domestic cats (Felis catus) were tested for responses to scent gland secretions of the gray rat snake (Elaphe obsoleta), or to choloroform extracts of them, applied to filter paper or food. More cats salivated or rubbed on filter papers treated with scent gland secretions than on control papers. Scent gland exudates elicited rubbing and pawing in cats more frequently than did chemicals from a shed snake skin. Cats offered food pieces treated either with water or with scent gland secretions ate fewer of the latter; this result is consistent with the hypothesis that scent gland secretions deter feeding.  相似文献   

18.
Each of 10 prairie rattlesnakes (Crotalus viridis) was exposed to three types of trails after striking rodent prey (Mus musculus). One trail was made with mouse urine, another was made with tap water, and the third consisted of materials from mouse integument. The snakes exhibited trailing behavior only when integumentary trails were available. It was concluded that prairie rattlesnakes do not utilize urinary cues; instead they attend to materials associated with rodent skin and fur.  相似文献   

19.
This study compared algal palatability and chemical defenses from subtropical green algae that may use different types of defense systems that deter feeding by the rock-boring sea urchin Echinometra lucunter. The potential defense systems present include (1) the terpenoid caulerpenyne and its activated products from Caulerpa spp., and (2) dimethylsulfoniopropionate (DMSP)-related defenses in Ulva spp. Secondary metabolites from these chemical groups have been shown to deter feeding by various marine herbivores, including tropical and temperate sea urchins. Live algal multiple-choice feeding assays and assays incorporating algal extracts or isolated metabolites into an artificial diet were conducted. Several green algae, including Ulva lactuca, Caulerpa prolifera, and Cladophora sp., were unpalatable. Nonpolar extracts from U. lactuca deterred feeding, whereas nonpolar extracts from C. prolifera had no effect on feeding. Polar extracts from both species stimulated feeding. Caulerpenyne deterred feeding at approximately 4% dry mass; however, dimethyl sulfide and acrylic acid had no effect at natural and elevated concentrations. E. lucunter is more tolerant than other sea urchins to DMSP-related defenses and less tolerant to caulerpenyne than many reef fish. Understanding the chemical defenses of the algae tested in this study is important because they, and related species, frequently are invasive or form blooms, and can significantly modify marine ecosystems.  相似文献   

20.
Behavioral and biochemical evidence is presented for hybridization between the fire ants,Solenopsis richteri andS. invicta. The response of the two species to extracts of their trail pheromones presented as a point source is clearly species-specific; however, hybrid workers responded to parental Dufour's gland extracts and parental workers responded to Dufour's gland extracts of the hybrid. The behavioral evidence for hybridization was confirmed by gas Chromatograph comparison of the Dufour's gland extracts of the three fire ant forms, which showed a pattern for the hybrid that was intermediate to the two parental species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号