首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
镁及镁合金晶粒细化的研究现状   总被引:2,自引:0,他引:2  
叙述了镁及镁合金晶粒细化的几种方法,即合金化法、变质处理法、固态变形处理法、半固态成形法、快速凝固法及熔体搅拌法等。细化镁合金晶粒尺寸能显著提高其力学性能.这对推广镁合金的应用具有重要意义。  相似文献   

3.
Crystallization of Amorphous Alloys   总被引:1,自引:0,他引:1  
Crystallization of amorphous alloys is compared with conventional solidification of melts. Taking account of the temperature dependence of crystal nucleation and growth rates, the links between the two processes are explored. The fundamentals of nucleation and growth kinetics in amorphous alloys are reviewed. It is shown that the crystallization of amorphous alloys can be exploited (1) to obtain ultrafine grained microstructures with useful properties and (2) to elucidate nucleation mechanisms in conventional grain-refining practice. This article is based on a presentation made at the “Analysis and Modeling of Solidification” symposium as part of the 1994 Fall meeting of TMS in Rosemont, Illinois, October 2–6, 1994, under the auspices of the TMS Solidification Committee.  相似文献   

4.
Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.  相似文献   

5.
A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.  相似文献   

6.
Electropulse modification (EPM) process, a new physical field method for improving the solidification structure of metals was introduced.Different from other research, EPM is only acting pulse current on melt under liquid state.The solidification structure of Al-Si alloys, A1-Cu alloys,cast iron and steel can be modified obviously with this method: the solidification structure of ZL101 alloy presented the Na and Sr modification and the mechanical properties were enhanced; a large number of primary silicon appeared in the microstructure of ZL109 alloy; the equiaxed grain zone was expanded and the grains were fined in Al-5.0wt% Cu alloy; the graphitization took place in solidification process of molten cast iron; the grain sizes of solidification structure of T8 steel were reduced significantly and the shape of steel pearlites also changed; the equiaxed grain zone increased to 88% from original untreated 19%, the equiaxed grains were fined and the intercrystalline crack was avoided in concasting billet by continuously treating liquid electrical sheet steel in tundish.Effects of rare earths on casting Al-Si alloys were also summarized.The method of modifying the solidification structure of rare earth Al-Si alloys with EPM in producing the alloys was proposed.  相似文献   

7.
8.
Controlled diffusion solidification (CDS) is a novel process wherein specific Al alloys can be cast by mixing two precursor alloys of specific compositions and temperature and subsequently casting the resultant mixture. This process enables a nondendritic morphology of the primary Al phase in the cast samples, which is beneficial in mitigating hot tearing tendencies and enabling castability of dilute Al (wrought) alloys to obtain castings with superior mechanical and performance properties. In this study, a hypothesis is proposed to describe the mechanism of the CDS process, specifically the processes of mixing two precursor alloys and a subsequent solidification process. Al – 4.5 wt pct Cu was used as an example alloy system to propose a hypothesis and to verify the various features in the mechanism of mixing two alloys. Experimental results show that the mixing process naturally causes copious nucleation of one of the alloys mixed and that the turbulence energy during mixing distributes these nuclei uniformly to enable a favorable solidification condition for a nondendritic cast microstructure. It is critical that the alloy with the higher thermal mass (mass and temperature) is mixed into the alloy with lower thermal mass to obtain a valid CDS process and that the reverse will not yield a favorable homogeneous cast sample. Certain critical parameters during the CDS process have also been identified and quantified for a favorable microstructure of the casting.  相似文献   

9.
In this article, a front tracking (FT) model and a modified cellular automaton (MCA) model are presented and their capabilities in modeling the microstructure evolution during solidification of aluminum alloys are demonstrated. The FT model is first validated by comparison with the predictions of the Lipton–Glicksman–Kurz (LGK) model. Calculations of the steady-state dendritic tip growth velocity and equilibrium liquid composition as a function of melt undercooling for an Al-4 wt pct Cu alloy exhibit good agreement between the FT simulations and the LGK predictions. The FT model is also used to simulate the secondary dendrite arm spacing as a function of local solidification time. The simulated results agree well with the experimental data. The MCA model is applied to simulate dendritic and nondendritic microstructure evolution in semisolid processing of an Al-Si alloy. The effect of fluid flow on dendritic growth is also examined. The solute profiles in equiaxed dendritic solidification of a ternary aluminum alloy are simulated as a function of cooling rate and compared with the prediction of the Scheil model. The MCA model is extended to the multiphase system for the simulation of eutectic solidification. A particular emphasis is made on the quantitative aspects of simulations. This article is based on a presentation made in the symposium ”Simulation of Aluminum Shape Casting Processing: From Design to Mechanical Properties,” which occurred March 12–16, 2006, during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the Computational Materials Science and Engineering Committee, the Process Modeling, Analysis and Control Committee, the Solidification Committee, the Mechanical Behavior of Materials Committee, and the Light Metal Division/Aluminum Committee.  相似文献   

10.
11.
To obtain a quantitative understanding of the effect of fluid flow on the microstructure of cast alloys, a technical Al-7 wt pct Si-0.6 wt pct Mg alloy (A357) has been directionally solidified with a medium temperature gradient under well-defined thermal and fluid-flow conditions. The solidification was studied in an aerogel-based furnace, which established flat isotherms and allowed the direct optical observation of the solidification process. A coil system around the sample induces a homogeneous rotating magnetic field (RMF) and, hence, a well-defined flow field close to the growing solid-liquid interface. The application of RMFs during directional solidification results in pronounced segregation effects: a change to pure eutectic solidification at the axis of the sample at high magnetic field strengths is observed. The investigations show that with increasing magnetic induction and, therefore, fluid flow, the primary dendrite spacing decreases, whereas the secondary dendrite arm spacing increases. An apparent flow effect on the eutectic spacing is observed. This article is based on a presentation made in the symposium entitled “Solidification Modeling and Microstructure Formation: in Honor of Prof. John Hunt,” which occurred March 13–15, 2006 during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the TMS Materials Processing and Manufacturing Division, Solidification Committee.  相似文献   

12.
We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.  相似文献   

13.
Wang  Qi  Chen  Ruirun  Gong  Xue  Guo  Jingjie  Su  Yanqing  Ding  Hongsheng  Fu  Hengzhi 《Metallurgical and Materials Transactions A》2018,49(10):4555-4564

Titanium aluminide (Ti-47Al-6Nb-0.1C) alloys were prepared using a cold crucible directional solidification technique with an input power range of 35 to 55 kW under a withdrawing velocity of 0.4 mm/min. The macro/microstructure was characterized, and the mechanical properties were evaluated. The results show that the directional solidification (DS) ingots exhibit β-solidification characteristics at an input power range of 35 to 55 kW, and a well-developed DS microstructure was acquired at an input power range of 40 and 45 kW. With the increasing input power, the lamellar spacing decreases, resulting in the increasing tendency in the average room-temperature yield strength. The steady-state creep rate strongly depends on the lamellar spacing, and the creep life depends on the DS microstructure. The well-developed DS alloy can significantly improve the creep properties but has little influence on the room-temperature tensile properties. Moreover, after testing the fracture toughness, the crack propagation showed interlamellar cracks, translamellar cracks, and intercolony boundary cracks that primarily propagated along the colony boundary after creep testing.

  相似文献   

14.
An investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the β-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the β-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 ± 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.  相似文献   

15.
A solidification model is developed and experimentally checked for Fe-C-Cr-Nb alloys in the white cast irons range. It is based on a partial quaternary Fe-C-Cr-NbC phase diagram and predicts the possible solidification paths for the alloys containing γ, with (Fe,Cr)7C3 and NbC as the microconstituents at room temperature. The dendritic γ to massive (Fe,Cr)7C3 transition in experimental alloy microstructures with NbC contents up to 22 pet is explained by this model. Thermal analysis is also used to compare the solidification paths and model approach.  相似文献   

16.
17.
This study is aimed at understanding the function of two nitride nanoparticles regarding altering the mechanical properties of hybrid magnesium alloys in relation to nanoparticle-matrix reactivity. Nitride nanoparticles were selected for reinforcement purposes due to the affinity between magnesium and nitrogen (in parallel with the well-known magnesium-oxygen affinity). AZ91/ZK60A and AZ31/AZ91 hybrid magnesium alloys were reinforced with AlN and Si3N4 nanoparticles (respectively) using solidification processing followed by hot extrusion. Each nitride nanocomposite exhibited higher tensile strength than the corresponding monolithic hybrid alloy. However, AZ91/ZK60A/AlN exhibited slightly lower tensile ductility than AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher tensile ductility than AZ31/AZ91. The formation of high strain zones (HSZs) (from particle surfaces inclusive) during tensile deformation as a significant mechanism supporting ductility enhancement was addressed. AZ91/ZK60A/AlN exhibited lower and higher compressive strength and ductility (respectively) compared to AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Nanograin formation (recrystallization) during room temperature compressive deformation (as a toughening mechanism) in relation to nanoparticle-stimulated nucleation (NSN) ability was also discussed. The beneficial (as well as comparative) effects of the respective nitride nanoparticle on each hybrid alloy are studied in this article.  相似文献   

18.
Effect of Zr and B on castability of Ni-based superalloy IN792   总被引:1,自引:0,他引:1  
The effect of Zr and B on hot tearing susceptibility of the Ni-based superalloy IN792 during directional solidification (DS) was studied. The Zr and B concentrations in the experimental alloys ranged from 0 to ∼550 ppm. The results indicate that Zr or B does not influence the castability when added individually. However, when both Zr and B are present in the alloy, high hot tearing susceptibility was found, the effect being particularly strong if Zr concentration was high. The castability results cannot be explained by simple solidification characteristics such as total freezing range (obtained from differential scanning calorimetry (DSC)) or by the amount of eutectic liquid (derived from the fraction of interdendritic γ/γ′ obtained from quantitative metallography). However, the present results can be interpreted in terms of formation of continuous films of liquid at grain boundaries (GBs) during the final stages of solidification rather than enclosed pockets. Such thin films of liquid may reduce GB cohesion and promote hot tearing.  相似文献   

19.
20.
Grain refinement of magnesium alloys   总被引:11,自引:0,他引:11  
The literature on grain refinement of magnesium alloys is reviewed with regard to two broad groups of alloys: alloys that contain aluminum and alloys that do not contain aluminum. The alloys that are free of aluminum are generally very well refined by Zr master alloys. On the other hand, the understanding of grain refinement in aluminum bearing alloys is poor and in many cases confusing probably due to the interaction between impurity elements and aluminum in affecting the potency of nucleant particles. A grain refinement model that was developed for aluminum alloys is presented, which takes into account both alloy chemistry and nucleant particle potency. This model is applied to experimental data for a range of magnesium alloys. It is shown that by using this analytical approach, new information on the refinement of magnesium alloys is obtained as well as providing a method of characterizing the effectiveness of new refiners. The new information revealed by the model has identified new directions for further research. Future research needs to focus on gaining a better understanding of the detailed mechanisms by which refinement occurs and gathering data to improve our ability to predict grain refinement for particular combinations of alloy and impurity chemistry and nucleant particles. This article is based on a presentation made in the symposium entitled “Phase Transformations and Deformation in Magnesium Alloys,” which occurred during the Spring TMS meeting, March 14–17, 2004, in Charlotte, NC, under the auspices of ASM-MSCTS Phase Transformations Committee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号