首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical behaviour of various types of BeO, Al2O3, and AlN have been investigated at confining pressures up to 1.25 GPa, at 25° C, and at strain rates of 3 to 7×10–5 sec–1. The stress-strain data taken in uniaxial compressive-stress loading indicate the BeO aggregates undergo a transition from brittle fracture at low pressures to plastic flow at high pressures. Depending on the fabrication process, this transition pressure in BeO occurs at 0.4 to 0.7 GPa. Concurrently, the ultimate compressive strength of BeO increases from 1.0 to 1.9 GPa at 0.1 MPa pressure to over 4.0 GPa at 1.O GPa. Alumina remains brittle at all pressures up to 1.25 GPa; its strength increases from 4.5 GPa at 0.1 MPa pressure to over 6.0 GPa at 1.25 GPa. Aluminium nitride behaves similarly to BeO, having a brittle-ductile transition at 0.55 GPa. Its ultimate strength increases from 3.2 GPa at 0.1 MPa pressure to 4.7 GPa at 0.8 GPa. The distortional strain energy (proportional to the area under the stress-strain curve) absorbed by each material during compression at pressure was calculated and compared to available data from the literature. Alumina shows a degraded energy absorption with pressure, but both BeO and AlN yield a strongly enhanced performance at moderate pressures. Beryllium oxide and AlN thus appear to be promising structural materials for certain applications where high strengths and ductilities are required at moderate pressures.  相似文献   

2.
《Composites》1994,25(10):906-912
Fracture in particulate-reinforced metal-matrix composites is initiated by particulate cracking and interface decohesion, and crack propagation occurs through the matrix, particulate and interface. A ‘critical stress partition’ model is described which considers the proportions of matrix, particulate and interface for which the fracture stress is exceeded. Tensile tests and microhardness measurements are reported for SiC/Al metal-matrix composites having particulate volume fractions of 0–20%. Measurements of the fractions of cracked and interface-debonded particulate before and after final fracture are combined with the fracture model to calculate the interface strength, σint′. The values of σint′ obtained are 469 MPa for uncoated SiC particulate and 438 MPa for particulate coated with a thin layer of Al2O3 to prevent interface reaction. The tensile results indicate that the weaker interfaces promote interface debonding and increase percent elongation.  相似文献   

3.
In the present work, HA reinforced with Al2O3 and multiwalled carbon nanotubes (CNTs) is processed using spark plasma sintering (SPS). Vickers micro indentation and nanoindentation of the samples revealed contrary mechanical properties (hardness of 4.0, 6.1, and 4.4 GPa of HA, HA–Al2O3 and HA–Al2O3–CNT samples at bulk scale, while that of 8.0, 9.0, and 7.0 GPa respectively at nanoscale), owing to the difference in the interaction of the indenter with the material at two different length scales. The addition of Al2O3 reinforcement has been shown to enhance the indentation fracture toughness of HA matrix from 1.18 MPa m1/2 to 2.07 MPa m1/2. Further CNT reinforcement has increased the fracture toughness to 2.3 times (2.72 MPa m1/2). In vitro biocompatibility of CNT reinforced HA–Al2O3 composite has been evaluated using MTT assay on mouse fibroblast L929 cell line. Cell adhesion and proliferation have been characterized using scanning electron microscopy (SEM), and have been quantified using UV spectrophotometer. The combination of cell viability data as well as microscopic observations of cultured surfaces suggests that SPS sintered HA–Al2O3–CNT composites exhibit the ability to promote cell adhesion and proliferation on their surface and prove to be promising new biocompatible materials.  相似文献   

4.
In this study, a novel approach was used to fabricate Al2O3 nanoparticle reinforced aluminum composites to avoid agglomeration of nanoparticles in matrix. Al2O3 nanoparticles were separately milled with aluminum and copper powders at different milling durations and incorporated into A356 alloy via stir casting method. The effects of milling process and milling time on mechanical properties of the composites were evaluated by hardness, tensile, and compression tests. Based on the results, some of the composites, reinforced with Al2O3-metallic mixed powders, showed higher mechanical performance compared with that of the pure Al2O3 nanoparticle reinforced composite. This enhancement is related to uniform distribution of individual nanoparticles and grain refinement of A356 matrix, shown in microstructural studies. Moreover, the results showed that an increase in milling time, led to a gradual decrease in mechanical performance of the samples. It can be related to further oxidation of metallic powders that can act as inclusions and also further probable contamination of nanoparticles with increase in milling time. Studies on the fracture surfaces revealed that the failure of matrix was the basic mechanism of fracture in the composites. Agglomerated nanoparticles were observed on dendrites in the fracture surface of the Al2O3–Al reinforcement samples.  相似文献   

5.
Al2O3 matrix composites with unidirectionally oriented high-purity Al2O3 fibre with and without carbon coating, were fabricated by the filament-winding method, followed by hot-pressing at 1573–1773 K. The composite with non-coated Al2O3 fibre exhibited a bending strength (594 MPa) comparable to that of monolithic Al2O3 (589 MPa). While the composite with a carbon-coated fibre had lower strength (477 MPa), it showed improved fracture toughness (6.5 MPa m1/2) compared to the composite with an uncoated fibre (4.5 MPa m1/2) and monolithic Al2O3 (5.5 MPa m1/2). This toughness enhancement was explained based on the increased crack extension resistance caused by the fibre pull-out observed by SEM at the notch tip. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 aluminum alloy/(0-20 wt%) graphite composites have successfully been fabricated by powder metallurgy process. At first, the mixed aluminum and graphite powders were cold compacted at 200 MPa and then sintered at 500 ℃ for 1 h followed by hot extrusion at 450 ℃. The influence of ceramic phases(free graphite and in-situ formed carbides) on microstructure, physical and mechanical properties of the produced composites were finally investigated. The results show that the fabricated composites have a relative density of over 98%. SEM observations indicate that the graphite has a good dispersion in the alloy matrix even at high graphite content. Hardness of all the produced composites was higher than that of aluminum alloy matrix. No cracks were observed at strain less than 23% for all hot extruded materials.Compressive strength, reduction in height, ultimate tensile stress, fracture stress, yield stress, and fracture strain of all Al/graphite composites were determined by high precision second order equations. Both compressive and ultimate tensile strengths have been correlated to microstructure constituents with focusing on the in-situ formed ceramic phases, silicon carbide(SiC) and aluminum carbide(Al_4 C_3). The ductile fracture mode of the produced composites became less dominant with increasing free graphite content and in-situ formed carbides. Wear resistance of Al/graphite composites was increased with increasing graphite content. Aluminum/20 wt% graphite composite exhibited superior wear resistance over that of AA6016 aluminum alloy.  相似文献   

7.
《Composites Part A》2003,34(11):1023-1027
With mixing different sized SiC particles, high reinforcement content SiCp/Al composites (Vp=50, 60 and 70%) for electronic packaging applications were fabricated by squeeze casting technology. The composites were free of porosity and SiC particles distributed uniformly in the composite. The mean linear coefficients of thermal expansion (20–100 °C) of SiCp/Al composites ranged from 8.3 to 10.8×10−6/°C and decreased with an increase in volume fraction of SiC content. The experimental coefficients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 188.6 to 258.0, and the modulus increased from 148 to 204 GPa for the corresponding composites. The bending strengths were larger than 370 MPa, but no obvious trend between bending strength and SiC content was observed.  相似文献   

8.
Abstract

The (Fe88Si12)95Al5 alloy was prepared by an aluminothermics. The (Fe88Si12)95Al5 alloy is composed of spheroidic α-Fe(Si,Al) precipitate with size of 20–50 nm and γ-Fe(Si,Al) matrix. The yield strength and fracture strain in compression of the (Fe88Si12)95Al5 alloy are 1500 MPa and 23% respectively. The shear bands propagating in the compressive deformation are arrested by the precipitation particles that resulted in large ductility and high strength simultaneously.  相似文献   

9.
A new process for composite fabrication was developed which improves distribution of the particulate reinforcing phase by polymer encapsulation of the particulate prior to consolidation. The effect of such processing on the fatigue-crack propagation and fracture toughness behaviour of particulate thermoplastic composites was investigated. Composites of several particulate size ranges were fabricated into disc-shaped, compact tension specimens and tested under cyclic and monotonie loading conditions. For comparison, a composite was also fabricated using a standard casting technique. The observed fatigue-crack growth rates spanned three orders of magnitude (10–11 to 10–9 m per cycle) over an applied stress intensity range, K, of 0.3 to 1.1 MPa m1/2. The measured fracture toughness values ranged from 0.69 to 2.95 MPa m1/2. Comparison of the two processing techniques indicated that encapsulation processing increased the fracture toughness of the composite by approximately 33%; however, the fatigue-crack growth behaviour was unaffected. In addition, a trend of increasing crack growth resistance (toughness) with increasing reinforcement particle size was observed. These results are discussed in the light of crack shielding and bridging models for composite toughening.  相似文献   

10.
Dense Al2O3 particle-Y-TZP matrix (Al2O3<40 vol%) composite was prepared by pressureless sintering at 1550°C. Composites with 10–30 vol% Al2O3 particles showed enhanced fracture toughness, bending strength and Vicker's hardness as compared to single-phase Y-TZP. The highest strength (1150 MPa) and highest toughness (12.4 MPa m1/2) were obtained for the composite containing 10 vol% Al2O3. It was found that, in addition to the contribution by the crack-deflection effect, the enhanced phase transformation from tetragonal to monoclinic during fracture was the main toughening mechanism in operation in the composites.  相似文献   

11.
Abstract

For fabrication of aluminium borate whisker (Al18B4O33(w)) reinforced 6061 aluminium alloy composites, a sol–gel alumina binder instead of conventional silica binder was used for preparing the whisker preforms of the squeeze cast composites. The results show that a sound whisker preform and a uniform composite can be made by this method. Unlike the reactive silica binder, the sol–gel alumina binder is rather stable throughout the entire high temperature fabrication process. Under appropriate conditions, the sol–gel alumina binder can also serve as a thermal barrier for minimising interfacial reactions between aluminium borate whiskers and the matrix alloy. With a binder concentration of 0.6 mol L-1, the ultimate tensile strength of the composite is as high as 277.6 MPa at room temperature and moderate at elevated temperatures. The tensile fracture of the alumina bound composite shows a mixed mode of dimple fracture and interface debonding.  相似文献   

12.
In situ Al0.5FeSi0.5/Al composites were prepared by transient liquid-phase sintering. The hardness and wear resistance of the composites were investigated with an XHV-1000 microhardness tester and an M-2000 wear tester. Results show that with increased sintering temperature and holding time, the in situ needle-like reinforcement is transformed into short, bar-like, massive particles. At a sintering temperature of 510 °C and holding time of 4 h, the reinforcement consists of short, bar-like Al0.5FeSi0.5; moreover, the hardness of the in situ Al0.5FeSi0.5/Al composites peaks to a value eight times that of pure aluminum and 2.5 times that of Al–Si alloy. Accordingly, the wear resistance of the composites is the highest, i.e., 6.6 that of pure Al and 4.5 times that of Al–Si alloy.  相似文献   

13.
New bimetal AZ31–Al2O3/AA5052 macrocomposite comprising (a) Al2O3 nanoparticle-reinforced magnesium alloy AZ31 shell and (b) aluminum alloy AA5052 millimeter-scale core reinforcement was fabricated using solidification processing followed by hot coextrusion. Microstructural characterization revealed more rounded intermetallic particle of decreased size, reasonable Al2O3 nanoparticle distribution, and non-dominant (0 0 0 2) texture in the longitudinal and transverse directions in the AZ31–Al2O3 nanocomposite shell. Interdiffusion of Mg and Al across the core–shell macrointerface into each other was also significant. Compared to monolithic AZ31, the AZ31–Al2O3 shell exhibited significantly higher hardness (+33%). In tension, the presence of Al2O3 nanoparticles (in the AZ31 shell) and AA5052 core significantly increased stiffness (+39%), yield strength (0.2% TYS) (+9%), ultimate strength (UTS) (+19%), average failure strain (+7%), and work of fracture (WOF) (+27%) of AZ31. In compression, the presence of Al2O3 nanoparticles (in the AZ31 shell) and AA5052 core significantly increased yield strength (0.2% CYS) (+58%), ultimate strength (UCS) (+4%), average failure strain (+11%), and WOF (+49%) of AZ31. The effect of joint presence of (a) Al2O3 nanoparticles (in the AZ31 shell) and (b) AA5052 millimeter-scale core on tensile and compressive properties of AZ31 is investigated in this article.  相似文献   

14.
High-pressure (2–4?GPa) solidified AZ91D alloy was prepared and the microstructure was investigated by X-ray energy diffraction and scanning electronic microscopy. The room-temperature compression deformation behaviour was also studied. The results showed that the high-pressure solidified AZ91D alloy was composed of nanometre β-Mg17Al12 and equiaxed α-Mg dendrites. The average size of α-Mg grains decreased from 395?±?5?µm (atmosphere pressure) to 12?±?3?µm (4?GPa) and the solubility of Al in α-Mg increased to 6.25?wt-% at 4?GPa. The compression strength of 402?MPa and the relative compression ratio of 27% (4?GPa) were 50% and 93% higher than the original AZ91D. Meanwhile, high pressure can also decreased the corrosion rate from 0.0675?mA/cm2 (atmosphere pressure) to 0.0122?mA/cm2 (4?GPa).  相似文献   

15.
The tensile deformation and fracture behaviour of aluminium alloy 2014 discontinuously-reinforced with particulates of Al2O3 was studied with the primary objective of understanding the influence of reinforcement content on composite microstructure, tensile properties and quasi-static fracture behaviour. Results reveal that elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. With increase in test temperature the elastic modulus showed a marginal decrease while the ductility exhibited significant improvement. The improved strength of the Al-Al2O3 composite is ascribed to the concurrent and mutually interactive influences of residual stresses generated due to intrinsic differences in thermal expansion coefficients between constituents of the composite, constrained plastic flow and triaxiality in the soft and ductile aluminium alloy matrix due to the presence of hard and brittle particulate reinforcements. Fracture on a microscopic scale initiated by cracking of the individual or agglomerates of Al2O3 particulates in the metal matrix and decohesion at the matrix-particle interfaces. Failure through cracking and decohesion at the interfaces increased with reinforcement content in the matrix. The kinetics of the fracture process is discussed in terms of applied far-field stress and intrinsic composite microstructural effects.  相似文献   

16.
In this paper, SiCp/Al composites with high reinforcement content are fabricated by pressureless infiltration with aluminum alloy into porous SiC preforms obtained by cold press forming. Microstructures and particulate distributions are analyzed with scanning electron microscope, X-ray diffraction and energy dispersive spectrometer. The reinforcement volume fraction reaches 65 % by using bimodal particle distributions. The bending strength ranges from 320 to 342 MPa, depending on particle sizes. Due to the intrinsically low thermal conductivity of the matrix, the thermal conductivity of SiCp/Al composites are in the range of 121–143 W m?1 K?1.  相似文献   

17.
Fabrication and mechanical behaviour of Al2O3/Mo nanocomposites   总被引:3,自引:0,他引:3  
Two types of Al2O3/Mo composites were fabricated by hot-pressing a mixture of - or -Al2O3 powder and a fine molybdenum powder. For Al2O3/5 vol% Mo composite using -Al2O3 as a starting powder, the elongated molybdenum layers were observed to surround a part of the Al2O3 grains, which resulted in an apparent high value of fracture toughness (7.1 Mpa m1/2). In the system using -Al2O3 as a starting powder, nanometre sized molybdenum particles were dispersed within the Al2O3 grains and at the grain boundaries. Thus, it was confirmed that ceramic/metal nanocomposite was successfully fabricated in the Al2O3/Mo composite system. With increasing molybdenum content, the elongated molybdenum particles were formed at Al2O3 grain boundaries. Considerable improvements of mechanical properties were observed, such as hardness of 19.2 GPa, fracture strength of 884 MPa and toughness of 7.6 MPa m1/2 in the composites containing 5, 7.5, 20 vol% Mo, respectively; however, they were not enhanced simultaneously. The relationships between microstructure and mechanical properties are also discussed.  相似文献   

18.
This investigation is mainly aimed to study the influence of SiC and Al2O3 particles on the mechanical properties and damage evolution behaviors of an aluminum alloy Al-2618. Heat treatments for the composites are also studied to optimize their mechanical properties. The results of tensile tests show that SiC particulate reinforcement has advantages over Al2O3 reinforcement in both strength and ductility for the composites. T4 treatment is suggested for the composites rather than conventional peak-aging treatment (T6). T4 heat treatment with an additional of 0.6% pre-strain can result in same UTS and a 0.2% proof stress for the composites as high as T6 treatment but the final elongation under T4 treatment is larger than that under T6 treatment by more than 100%. Based on observation of damage evolution behaviors of the reinforcing particles, a theory that strength of the composites is mainly decided by the balance between reinforcing particles sharing load and making strain discontinuity in the matrix is proposed to interpret the test results. Their tolerance for large local strain at the interface, their high K1c and their low thermal expansion make SiC particles sharing much load and the better reinforcement over Al2O3 particles in respect to both strength and ductility of the composites.  相似文献   

19.
The toughness of epoxy-poly(butylene terephthalate) blends   总被引:1,自引:0,他引:1  
Blends containing 5% poly(butylene terephthalate) (PBT) in an anhydride-cured epoxy with three different PBT morphologies were studied. The three morphologies were a dispersion of spherulites, a structureless gel and a gel with spherulites. The average fracture toughnesses, K Ic, and fracture energies, G Ic, for those morphologies were 0.83, 2.3 and 1.8 MPa m1/2 and 240, 2000 and 1150 J m–2, respectively. These values should be compared with the values of 0.72 MPa m1/2 and 180 J m–2, respectively, for the cured epoxy without PBT. The elastic moduli and yield strengths in compression for all three blend morphologies remained essentially unchanged from those of the cured epoxy without PBT, namely, 2.9 GPa for the modulus and 115 MPa for the yield strength. The fracture surfaces of the cured spherulitic dispersion blends indicate the absorption of fracture energy by crack bifurcation induced by the spherulites. The fracture surfaces of the cured structureless gel blends indicate that fracture energy was absorbed by matrix and PBT plastic deformation and by spontaneous crack bifurcation. But phase transformation of the PBT and anelastic strain of the matrix below the fracture surfaces may account for most of the large fracture energy of the cured structureless gel blends.  相似文献   

20.
Al2O3 matrix with three grades of Cr3C2 particle size (0.5, 1.5 and 7.5 m) composites were fabricated by a hot-pressing technique. Fully dense compacts with Cr3C2 content up to 40 vol % can be acquired at 1400 °C under 30 MPa pressure for 1 h. The flexural strength increases from 595 to 785 Mpa for fine Cr3C2 particle (0.5 m) reinforced Al2O3 matrix composites. The fracture strength is significantly dependent on the fracture modes of matrix (intergranular or transgranular). The transgranular fracture with a compressive residual stress gives a high fracture strength of composites. At the same time, the fracture toughness increases from 5.2 MPa m1/2 (10 vol % Cr3C2) to 8.0 MPa m1/2 (30 vol % Cr3C2) for the coarse Cr3C2 particle (7.5 n) reinforced Al2O3 matrix composites. The toughening effects of incorporating Cr3C2 particles into Al2O3 matrix originate from crack bridging and deflection. The electrical conductivity and the possibility of electrical discharge machining of these composites were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号