首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A refined non-conforming quadrilateral thin plate bending element RPQ4 which can satisfy the requirement of convergence is established such that the non-conforming displacement function can be derived directly. A simple explicit expression of a refined constant strain matrix can be introduced into the formulation of the standard displacement element which results in the constraint condition of interelement continuity being satisfied in an average sense. Numerical examples are presented to show that the present model can pass the patch test and possesses high accuracy. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Based on a new generalized variational principle, a refined direct stiffness method (RDSM) which can be directly used to improve non-conforming elements is proposed. The formulation is similar to that of the direct stiffness method (DSM), but the constraint condition of interelement continuity is satisfied in an average sense and as a result convergence and high accuracy are insured. The well-known BCIZ nine-parameter triangular thin plate bending element is refined by the RDSM to yield a new nine-parameter thin plate bending element RT9. Numerical examples are presented to show that the present model passes the patch test and possesses high accuracy.  相似文献   

3.
Based on the refined non‐conforming element method, simple flat triangular elements with standard nodal displacement parameters are proposed for the analysis of shell structures. For ensuring the convergence of the elements a new coupled continuity condition at the inter‐element has been established in a weaker form. A common displacement for the inter‐element, an explicit expression of refined constant strain matrix, and an adjustable constant are introduced into the formulation, in which the coupled continuity requirement at the inter‐element is satisfied in the average sense. The non‐conforming displacement function of the well‐known triangular plate element BCIZ [1] and the membrane displacement of the constant strain triangular element CST [2] are employed to derive the refined flat shell elements RTS15, and the refined flat shell elements RTS18 is derived by using the element BCIZ and the Allman's triangular plane element [3] with the drilling degrees of freedom. A simple reduced higher‐order membrane strain matrix is proposed to avoid membrane locking of the element RTS18. An alternative new reduced higher‐order strain matrix method is developed to improve the accuracy of the elements RTS15 and RTS18. Numerical examples are given to show that the present methods have improved the accuracy of the shell analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Based on a variational principle with relaxed inter-element continuity requirements, a refined hybrid quadrilateral degenerated shell element GNRH6, which is a non-conforming model with six internal displacements, is proposed for the geometrically non-linear analysis. The orthogonal approach and non-conforming modes are incorporated into the geometrically non-linear formulation. Numerical results show that the orthogonal approach can improve computational efficiency while the non-conforming modes can eliminate the shear/membrane locking phenomenon and improve the accuracy. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A refined discrete degenerated 15‐DOF triangular shell element RDTS15 with high performances is proposed. For constructing the element displacement function, the exact displacement function of the Timoshenko's beam is used as the displacement on the element boundary, and the re‐constitute method for shear strain matrix is adopted. The proposed element can be used in the analysis of both moderate thick and thin plates/shells. Numerical examples presented show that the new model indeed possesses higher accuracy in the analysis of thin and thick plates/shells, and that it can pass the patch test required for the Kirchhoff thin plate elements, and also passed the inf–sup test for free cylindrical shell problems and satisfied both the bending‐ and membrane‐dominated test. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

6.
A refined non‐conforming triangular plate/shell element for geometric non‐linear analysis of plates/shells using the total Lagrangian/updated Lagrangian approach is constructed in this paper based on the refined non‐conforming element method for geometric non‐linear analysis. The Allman's triangular plane element with vertex degrees of freedom and the refined triangular plate‐bending element RT9 are used to construct the present element. Numerical examples demonstrate that the accuracy of the new element is quite high in the geometric non‐linear analysis of plates/shells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A family of simple, displacement-based and shear-flexible triangular and quadrilateral flat plate/shell elements for linear and geometrically nonlinear analysis of thin to moderately thick laminate composite plates are introduced and summarized in this paper.

The developed elements are based on the first-order shear deformation theory (FSDT) and von-Karman’s large deflection theory, and total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from Timoshenko’s laminated composite beam functions, thus convergence can be ensured theoretically for very thin laminates and shear-locking problem is avoided naturally.

The flat triangular plate/shell element is of 3-node, 18-degree-of-freedom, and the plane displacement interpolation functions of the Allman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. The flat quadrilateral plate/shell element is of 4-node, 24-degree-of-freedom, and the linear displacement interpolation functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements.

The developed elements are simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the elements are convergent, not sensitive to mesh distortion, accurate and efficient for linear and geometric nonlinear analysis of thin to moderately thick laminates.  相似文献   


8.
本文根据几何非线性不协调元增量变分原理,按严格的壳体方程,建立了高精度的圆柱壳几何非线性20参数矩形精化不协调元RCSR4,并用于圆柱壳非线性初始稳定性分析。计算结果表明,该方法收敛性良好。  相似文献   

9.
10.
The static response of laminated sandwich plates having imperfections at the layer interfaces is investigated by a refined plate theory. The plate theory represents parabolic through thickness variation of transverse shear stresses, which are continuous at the layer interfaces and become zero at the plate top and bottom surfaces. In this plate model the interfacial imperfection is represented by a linear spring-layer. Moreover, with all these features of an accurate modeling, it involves unknowns only at the reference plane of the plate. To have generality in the analysis, finite element method is adopted. But any existing plate element cannot be used, as the plate theory demands certain inter-elemental continuity. Thus an attempt has also been made to develop a new triangular element. As there is no published result on imperfect sandwich plates, the problems of perfect sandwich plates and ordinary laminated plate with inter-laminar imperfection are used for validation.  相似文献   

11.
This paper is concerned with the development of the geometric stiffness matrix of thick shell finite elements for geometrically nonlinear analysis of the Newton type. A linear shell element that is comprised of the constant stress triangular membrane element and the triangular discrete Kirchhoff Mindlin theory (DKMT) plate element is ‘upgraded’ to become a geometrically nonlinear thick shell finite element. Perturbation methods are used to derive the geometric stiffness matrix from the gradient, in global coordinates, of the nodal force vector when stresses are kept fixed. The present approach follows earlier works associated with trusses, space frames and thin shells. It has the advantage of explicitness and clear physical insight. A special procedure, tailored to triangular elements is used to isolate pure rotations to enable stress recovery via linear elastic constitutive relations. Several examples are solved. The results compare well with those available in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A formulation for 36‐DOF assumed strain triangular solid shell element is developed for efficient analysis of plates and shells undergoing finite rotations. Higher order deformation modes described by the bubble function displacements are added to the assumed displacement field. The assumed strain field is carefully selected to alleviate locking effect. The resulting element shows little effect of membrane locking as well as shear locking, hence, it allows modelling of curved shell structures with curved elements. The kinematics of the present formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the present element is free of small angle assumptions, and thus it allows large load increments in the geometrically non‐linear analysis. Various numerical examples demonstrate the validity and effectiveness of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
基于精化锯齿理论,构造了六节点三角形协调板单元并推导了夹层板自由振动问题有限元列式。不同于已有锯齿理论,精化锯齿理论特点是面内位移不含有横向位移一阶导数,构造有限元时仅需要C0 插值函数。为验证单元性能,分析了软核夹层板自由振动问题。结果表明,该文构造的单元能准确计算软核夹层板固有频率,然而基于已有锯齿理论建立的不协调元计算结果精度较低。  相似文献   

14.
To analyze angle-ply laminated composite and sandwich plates coupled bending and extension under thermo-mechanical loading, a refined global–local higher-order theory considering transverse normal strain is presented in this work. Hitherto, present theory for angle-ply laminates has never been reported in the literature, and this theory can satisfy continuity of transverse shear stresses at interfaces. In addition, the number of unknowns in present model is independent of layer numbers of the laminate. Based on this theory as well as methodology of the refined triangular discrete Kirchhoff plate element, a triangular laminated plate element satisfying the requirement of C1 continuity is presented. Numerical results show that the present refined theory can accurately analyze the bending problems of angle-ply composite and sandwich plates as well as thermal expansion problem of cross-ply plates, and the present refined theory is obviously superior to the existing global–local higher-order theory proposed by Li and Liu [Li XY, Liu D. Generalized laminate theories based on double superposition hypothesis. Int J Numer Meth Eng 1997;40:1197–212]. After ascertaining the accuracy of present model, the distributions of displacements and stresses for angle-ply laminated plates under temperature loads are also given in present work. These results can serve as a reference for future investigations.  相似文献   

15.
An efficient triangular element based on an inter‐laminar shear stress continuous plate theory is developed and applied to the analysis of composite and sandwich plates under different situations to study the performance of the element. The plate theory represents parabolic through thickness variation of transverse shear stresses where the continuity condition of these stresses are satisfied at the layer interfaces. It also satisfies transverse shear stress free condition at the top and bottom surfaces of the plate. The most attractive feature of the plate theory is that the basic unknowns are same as those used in first‐order shear deformation theory. The only problem lies with this elegant plate theory is found in its finite element implementation, as it requires C1 continuity of transverse displacement at the element interfaces. This is a well‐known problem of thin plate elements, which is also found in some other refined plate theories. Although there are some elements based on these refined plate theories but the number of such elements is very few and they possess certain drawbacks in general. Keeping these aspects in view, an attempt has been made in this study to develop a six‐noded triangular element having equal degrees of freedom at each node. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
基于高阶剪切变形层合板理论(该理论满足层间位移、应力连续条件)建立了一种精化方法,由此建立了三角形精化板单元.该单元满足单元间C1类弱连续条件,其收敛性得到保证,且具有列式简单、计算效率和精度高的优点.   相似文献   

17.
Two refined quadrilateral flat shell elements named RSQ20 and RSQ24 are constructed in this paper based on the refined non‐conforming element method, and the elements can satisfy the displacement compatibility requirement at the interelement of the non‐planar elements by introducing the common displacements suggested by Chen and Cheung. A refined quadrilateral plate element RPQ4 and a plane quadrilateral isoparametric element are combined to obtain the refined quadrilateral flat shell element RSQ20, and a refined quadrilateral flat shell element RSQ24 is constructed on the basis of a RPQ4 element and a quadrilateral isoparametric element with drilling degrees of freedom. The numerical examples show that the present method can improve the accuracy of shell analysis and that the two new refined quadrilateral flat shell elements are efficient and accurate in the linear analysis of some shell structures. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A refined discrete degenerated 20‐DOF quadrilateral shell element RQS20 is proposed. The exact displacement function of the Timoshenko's beam is used as the displacement on the element boundary. The re‐constitute method for shear strain matrix is adopted. The proposed element can be used for the analysis of both moderately thick and thin plates/shells, and the convergence for the very thin case can be ensured theoretically. Numerical examples presented show that the new model indeed possesses higher accuracy in the analysis of thin and thick plates/shells, and that it can pass the patch test required for the Kirchhoff thin plate elements. Most important of all, it is free from the membrane and shear locking phenomena for extremely thin plates/shells, on the one hand, and it can also avoid the phenomenon of oscillatory solutions for thick plates/shells case on the other. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with development of triangular finite element for buckling and vibration analysis of laminated composite stiffened shells. For the laminated shell, an equivalent layer shell theory is employed. The first-order shear deformation theory including extension of the normal line is used. In order to take into account a non-homogeneous distribution of the transverse shear stresses a correction of transverse shear stiffness is employed. Based on the equivalent layer theory with six degrees of freedom (three displacements and three rotations), a finite element that ensures C0 continuity of the displacement and rotation fields across inter-element boundaries has been developed. Numerical examples are presented to show the accuracy and convergence characteristics of the element. Results of vibration and buckling analysis of stiffened plates and shells are discussed.  相似文献   

20.
A total Lagrangian finite element formulation for the geometrically nonlinear analysis (large displacement/large rotations) of shells is presented. Explicit expressions of all relevant finite element matrices are obtained by means of the definition of a local co-ordinate system, based on the shell principal curvature directions, for the evaluation of strains and stresses. A series of examples of nonlinear analysis of shell and plate structures is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号