首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidative stability of polyunsaturated fatty acids (PUFA) and soybean oil homogenized with emulsifiers was investigated. Model emulsions were prepared from PUFA, including linoleic acid (LA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), and from soybean oil emulsified with different emulsifiers: three Tween emulsifiers (Tween 20, Tween 60, Tween 80) and two sucrose esters (S-1170 and S-1570) were used. The results showed that the emulsions prepared from LA and the various emulsifiers, oxidized at 40°C, were unstable. However, the corresponding AA, EPA, and DHA emulsions were stable, indicating that PUFA with a higher degree of unsaturation were more stable with emulsifiers than without the emulsifiers. In the soybean oil-in-water model system, the oxidation of soybean oil with various emulsifiers was less than without the emulsifiers.  相似文献   

2.
Argan oil is well known for its nutraceutical properties. Its specific fatty acid composition and antioxidant content contribute to the stability of the oil and to its dietetic and culinary values. There is an increasing interest to use argan oil in cosmetics, pharmaceutics, and food products. However, the formulation of highly stable emulsions with prolonged shelf life is needed. In this study, argan oil‐in‐water (O/W) emulsions were prepared using microchannel (MC) emulsification process, stabilized by different non‐ionic emulsifiers. The effects of processing temperature on droplet size and size distribution were studied. Physical stability of argan O/W emulsions was also investigated by accelerated stability testing and during storage at room temperature (25 ± 2°C). Highly monodisperse argan O/W emulsions were produced at temperatures up to 70°C. The obtained emulsions were physically stable for several months at room temperature. Furthermore, emulsifier type, concentration, and temperature were the major determinants influencing the droplet size and size distribution. The results indicated that a suitable emulsifier should be selected by experimentation, since the interfacial tension and hydrophilic–lipophilic balance values were not suitable to predict the emulsifying efficiency. Practical applications: MC emulsification produces efficiently monodisperse droplets at wide range of temperatures. The findings of this work may be of great interest for both scientific and industrial purposes since highly stable and monodisperse argan oil‐in‐water emulsions were produced which can be incorporated into food, cosmetic, or pharmaceutical formulations.  相似文献   

3.
Recent research has shown that the oxidative stability of oil‐in‐water emulsions is affected by the type of surfactant used as emulsifier. The aim of this study was to evaluate the effect of real food emulsifiers as well as metal chelation by EDTA and pH on the oxidative stability of a 10% n‐3‐enriched oil‐in‐water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Tween resulted in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate‐stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA generally reduced oxidation, as evaluated by volatiles formation in all emulsions, irrespective of pH and emulsifier type, except in the lecithin and caseinate emulsions where a pro‐oxidative effect was observed for some volatiles. The different effects of the emulsifier types could be related to their ability to chelate iron, scavenge free radicals, interfere with interactions between the lipid hydroperoxides and iron as well as to form a physical barrier around the oil droplets.  相似文献   

4.
Summary The bonds between some water-soluble emulsifiers and water are hydrogen bonds with low energies of dissociation, of the order of 7 kcal./mole. In the absence of other factors such bonds can be broken by the kinetic energy of motion at elevated temperatures. The solubility of several emulsifiers was determined, and emulsions containing these emulsifiers at concentrations 2 to 4 times the amount required to make a monomolecular film of the oil droplets were made. To provide emulsion stability at homogenization and sterilization temperatures the emulsifiers must be more hydrophilic than many oil-in-water emulsifiers that are satisfactory in ordinary use and must have an increased affinity for water in the temperature range of 5° to 120°. For a given type of emulsifier containing a given alkyl group, an optimum weight percentage of polyoxyethylene groups is required. The solubility of an amine type emulsifier with the same alkyl group and approximately the same weight percentage of polyoxyethylene groups per molecule is greater than that of the corresponding amide compound, which, in turn, is more soluble than the corresponding ester type of emulsifier, because of differences in chemical type. Polyethylene-propylene oxide had the longest solubility range of the emulsifiers tested. An increase in particle size or an appearance of two phases in emulsions prepared with emulsifiers which undergo solubility inversion below 85° was found. Emulsions prepared with emulsifiers whose inversion temperatures were above 85° maintained, generally, a low particle size on autoclaving, did not separate into a watery phase and an emulsion phase, and did not form a layer of oil. Emulsions prepared with two emulsifiers, such that one had some lipophilic characteristics stronger than the other, were found to be stable and maintain a low particle size on autoclaving. This investigation was supported in part by funds from the Office of Surgeon General. One of the laboratories of the Southern Utilization Research Branch, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

5.
Palm-oil-in-water emulsions were prepared with mixtures of Tween 40 and Span 40 in various proportions. Stability and droplet-size distribution of the emulsions were monitored. Interfacial tensions of the palm oil/water interface were also determined in the presence of these emulsifier mixtures. Emulsifying efficiency of the emulsifier mixtures was assessed. No synergistic effect of Tween 40 (sorbitan monopalmitate with 18–22 moles of ethylene oxide) and Span 40 (sorbitan monopalmitate) was found on interfacial tension. Tween 40 alone (hydrophilic-lipophilic balance value 15.6) at 1.0% w/w gave palm oil emulsions that were stable for more than 30 d at 60°C. Emulsifier mixtures of Tween 40 and Span 40 with hydrophilic-lipophilic balance values in the range of 8.0–8.6 produced stable emulsions only at much higher emulsifier-mixture concentrations. The inherent nature of the oil and the accompanying natural surface-active materials present in the oil can influence the prevailing conditions at the oil/water interface and alter composition of the interfacial film and hence its stability.  相似文献   

6.
The effects of droplet size and emulsifiers on oxidative stability of polyunsaturated TAG in oil-in-water (o/w) emulsions with droplet sizes of 0.806±0.0690, 3.28±0.0660, or 10.7±0.106 μm (mean ± SD) were investigated. Hydroperoxide contents in the emulsion with a mean droplet size of 0.831 μm were significantly lower than those in the emulsion with a mean droplet size of 12.8 μm for up to 120 h of oxidation time. Residual oxygen contents in the headspace air of the vials containing an o/w emulsion with a mean droplet size of 0.831 μm were lower compared with those of the emulsion with a mean droplet size of 12.8 μm. Hexanal developed from soybean oil TAG o/w emulsions with smaller droplet size showed significantly lower residual oxygen contents than those of the larger droplet size emulsions. Consequently, oxidative stability of TAG in o/w emulsions could be controlled by the size of oil droplet even though the origins of TAG were different. Spin-spin relaxation time of protons of acyl residues on TAG in o/w emulsions measured by 1H NMR suggested that motional frequency of some acyl residues was shorter in o/w emulsions with a smaller droplet size. The effect of the wedge associated with hydrophobic acyl residues of emulsifiers was proposed as a possible mechanism to explain differences in oxidative stability between o/w emulsions with different droplet sizes.  相似文献   

7.
Different emulsions based on six types of vegetable oils (sunflower, canola, sesame, olive, coconut, and palm olein) were studied to investigate the role of the oil phase in the stability and physicochemical characteristics of oil-in-water emulsions prepared with gum tragacanth. The results indicated that the stability, rheological parameters, and size distribution of emulsions were dependent on the oil type. Based on the interfacial tension value, the type of oil did not have a significant effect on the gum tragacanth-emulsifying properties. The formulation based on sunflower and coconut oil led to producing more stable emulsion and a sample containing palm olein resulted in an unstable emulsion. Rheological analysis revealed that the sample based on palm olein showed the lowest consistency coefficient (2.10 ± 0.05 Pas n), elastic modulus (3.90 ± 0.21 Pa), and energy of cohesion (80.87 ± 1.1 J m−3). This study revealed that using oils with lower viscosity and higher density led to the higher stability of the emulsion samples.  相似文献   

8.
The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the emulsifier. Hence, emulsions were prepared with either a combination of α-lactalbumin and β-lactoglobulin or with a combination of sodium caseinate and β-lactoglobulin. Results showed that an increase in pressure increased the oxidative stability of emulsions with caseinate and β-lactoglobulin, whereas it decreased the oxidative stability of emulsions with α-lactalbumin and β-lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions.  相似文献   

9.
Two immiscible liquids are commonly mixed by mechanically dispersing one into the other to form emulsions. Surfactants or emulsifiers confer stability. Mechanical mixing, in practice, is an energy-intensive shear flow that is ineffective when the ratio of the dispersed-phase viscosity to the continuous-phase viscosity exceeds about four. Extensional flows are not subject to this viscosity ratio limit. This superiority of extensional flow was exploited to fabricate a novel, continuous-flow, cone-shaped device with an extensional strain of eight to make fine soybean oil-in-water emulsions. A spherical insert having a wall clearance of 25 μm was an effective design factor. Starting with ‘coarse’ 50 wt.% oil emulsions, two stretching episodes were needed for size reduction. The temperature rise was negligible, and the results were independent of the emulsifier type employed. Increasing flow rate and stretching episodes, reducing wall clearance, enhancing emulsifier concentration, and multiple passes through the device gave progressively smaller drops; the volume-averaged diameter became less than 2 μm, and the number-averaged diameter reached 0.5 μm, narrowing the size distribution. The emulsions that formed had a high viscosity and were stable. The performance of a scaled-up device was compared with other mixers. At equivalent energy density and 50 wt.% oil, drop sizes were similar for a valve homogenizer but larger for a rotor-stator mixer. At 80 wt.% oil, the rotor stator-mixer again required more energy for the same drop size, but emulsions prepared with the valve homogenizer broke. The findings of this study can help to design industrial-scale energy-efficient extensional-flow dominant devices for the formation of food emulsions.  相似文献   

10.
Cupuassu fat is a good candidate for partial substitution of cocoa butter in many products, including emulsions. However, for such use it is necessary to know the characteristics of the products prepared with cupuassu fat. Therefore, the main goal of this work is to characterize emulsions prepared with cupuassu fat using the surfactants Tween® 60, Tween® 80 and Tween® 85 as emulsifiers. The emulsions were prepared at 43 °C with addition of 0.5 or 1.5 % (w/v) of surfactant and compared with an emulsion without surfactant. All emulsions were analysed by conductivity, stability, pH, optical microscopy, rheology and oxidative stability. It was verified that the emulsions prepared with Tween® 60 and Tween® 80 have higher stability, smaller droplet size and higher apparent viscosity. Also, these properties are positively influenced by the concentration of the surfactant. On the other hand, emulsions prepared with Tween 85 or without surfactant reached unsatisfactory results. The rheological behaviour of the emulsions was adequately described by both Herschel-Bulkley and Mizhari-Berki models revealing pseudoplastic character. These emulsions also present strong gel behaviour, with storage modulus higher than loss modulus. In conclusion, cupuassu fat can be used as oil phase for emulsions products and this characterization helps to understand their behaviour in order to increase their use in food industry.  相似文献   

11.
The effect of quercetin and myricetin on the stability of sunflower oil and oil-in-water emulsions was studied by storage experiments monitored by measurement of peroxide values, conjugated dienes, and headspace volatile analysis. Myricetin showed strong antioxidant activity in oils stored at 60 or 30°C and in oil-in-water emulsions stored at 30°C, whether tocopherols or citric acid were present or not; however, quercetin showed similar antioxidant activity in stripped sunflower oil but no activity in oils that contained tocopherols and citric acid. This showed that myricetin is effective owing to strong radical scavenging and metal-chelating properties, whereas quercetin has weaker radical scavenging activity, although it is also active by metal-chelation. The effects of copper and iron salts on the antioxidant activity of myricetin and quercetin were studied in sunflower oil and oil-in-water emulsions. Quercetin and myricetin enhanced the prooxidant effect of cupric chloride in oil-in-water emulsions (pH 7.4), but this effect was not observed with cupric stearate. The addition of myricetin to emulsions that contained ferric chloride at pH 5.4 also produced a strong prooxidant effect, and small prooxidant effects of flavonols were also detected in the presence of cupric chloride under these conditions. However, myricetin and quercetin reduced the prooxidant effect of ferric palmitate in oils. Myricetin also showed a strong antioxidant effect in oil that contained cupric stearate, although quercetin had no significant effect on the oxidative stability of this system. It therefore appears that flavonols may exert a prooxidant effect in the presence of metal salts, but the nature of the metal salt is important in determining whether a prooxidant effect occurs.  相似文献   

12.
The main goal of this study was to describe the method of the synthesis of the dodecyl-, tetradecyl-, hexadecyl- and octadecyl-propylene glycol emulsifiers in the presence of selected anionic and nonionic surfactants. Acyl propylene glycol emulsifiers were produced by esterification of propane–1,2-diol (propylene glycol, PG) with C12:0–C18:0 fatty acids in the presence of anionic sodium dodecyl sulfate (SDS) and nonionic-poly(ethylene glycol) monolaurate (PEGML). The presence of SDS and PEGML in the reaction system caused microemulsion formation. Depending on the structure and amount of the surfactant in the system reactions proceeded at different rates and with different efficiency levels. The esterification of propylene glycol carried out under applied conditions causes products with the desired contents of propylene glycol monoesters (MAPG) to be obtained in a one-step reaction. Knowledge of the reaction kinetics creates the possibility to program the composition and properties of the synthesized emulsifiers. The interaction of nonionic, lipophilic MAPG with anionic, hydrophilic SDS or nonionic, hydrophilic PEGML influences the hydrophile–lipophile balance (HLB) values of the products which may be used to stabilize water-in-oil (W/O) and oil-in-water (O/W) emulsions. Use of the synthesized compounds allows stable emulsions to be prepared which include the following vegetable fats in the oil phase: mango oil, palm oil, shorea butter and hydrogenated soybean oil.  相似文献   

13.
The stabilityof vitamin A was studied in thee different emulsions: oil-in-water (O/W), water-in-oil (W/O), and oil-in-water-in-oil (O/W/O). The stability of retinol (vitamin A alcohol) in the O/W/O emulsion was the highest among the thee types of emulsions; remaining percentages at 50°C after 4 wk in the O/W/O, W/O, and O/W emulsions were 56.9, 45.7, and 32.3, respectively. With increasing peroxide value of O/W and W/O emulsifiers, the remaining percentage of vitamin A palmitate and retinol in the emulsions decreased significantly, indicating that peroxides in the formulae accelerate the decomposition of vitamin A. Organophilic clay mineral (an oil gelling agent and a W/O emulsifier) also affected the stability of retinol; synthesized saponite was better than naturally occurring bentonite for retinol stability. The stability of retinol in the O/W/O emulsion increased with increasing inner oil phase ratio (φi), whereas in O/W it was unaffected by φi. Encapsulation percent of retinol in the O/W/O emulsion, the ratio of retinol in the inner oil phase to the total amount in the emulsion, increased with increasing φi. The remaining percent of retinol in the O/W/O emulsion was in excellent agreement with encapsulation percent, suggesting that retinol in the inner oil phase is more stable than that in the outer oil phase. Addition of antioxidants (tert-butylhydroxytoluene, sodium ascorbate, and EDTA) to the O/W/O emulsion improved the stability of retinol up to 77.1% at 50°C after 4 wk. We conclude that the O/W/O emulsion is a useful formula to stabilize vitamin A.  相似文献   

14.
Emulsifiers and stabilizers play an important role in emulsion stability. Optical characterization and droplet size distribution of oil‐in‐water emulsions formulated with different types and concentrations of modified sunflower lecithin [phosphatidylcholine (PC) enriched lecithin and deoiled sunflower lecithin], with or without chia mucilage (0.75 % wt/wt), have been evaluated as a function of storage time at 4 ± 1 °C. Emulsions with PC‐enriched lecithin (without chia mucilage) exhibited the highest stability at the different concentrations because of the high PC/phosphatidylethanolamine ratio in comparison to Control lecithin. The addition of 0.75 % wt/wt mucilage contributed to obtain stable emulsions for all type and concentrations of emulsifiers studied, mainly with PC‐enriched lecithin due to the reduction of the mobility of oil particles by the formation of a tridimensional network.  相似文献   

15.
A number of carbohydrate fatty acid polyesters, potential fat substitutes, were screened for their ability to reduce surface and interfacial tensions alone or as blends with commercial emulsifiers. Commercial sucrose ester emulsifiers (Ryoto, Mitsubishi-Kasei Food Corporation, Tokyo, Japan) were evaluated alone or blended with other sucrose esters or with other carbohydrate fatty acid polyesters, and their surfactant properties were examined in terms of their ability to reduce surface and interfacial tensions at different concentrations and to stabilize oil-in-water (o/w) and water-in-oil (w/o) food emulsions at room and refrigeration temperatures, respectively. In general, when used alone the carbohydrate polyesters were excellent stabilizers of w/o emulsions and poor stabilizers of o/w emulsions. Blending lipophilic carbohydrate polyesters with hydrophilic commercial emulsifiers, such as S-1670, produced stable o/w emulsions and unstable w/o emulsions. Our results suggest that emulsifier blends of potential fat substitutes with FDA-approved commercial sugar ester emulsifiers can be prepared for possible use in low-calorie foods, cosmetics and pharmaceuticals as o/w and w/o emulsifiers.  相似文献   

16.
Emulgels and bigels are, respectively, partial and total gelified forms of emulsions that can increase stability and bring different permeation and diffusion properties for traditional oil and water mixtures. This work investigated the stability, rheological behavior, and microstructure of bigels and emulgels through a topical application perspective. Candelilla wax (CW)/sunflower oil (5/95) organogels or pure sunflower oil was used to obtain dilute (5% oily phase) and concentrated (40% oily phase) emulsions. It was used three different aqueous phases with each oily phase and oil load: water, sodium polyacrylate hydrogel, and modified starch hydrogel. Dilute emulsions showed better stability with sodium polyacrylate hydrogel forming oil-in-water bigels and emulgels while concentrated emulsions were stable only in water-in-oil emulgels. Thixotropy, network strength, and thermal stability were modulated by the oily phase and concentration used. Concentrated emulgels showed higher spreadability, but strong temperature-dependency. Diluted emulgels and bigels showed high hydrogel influence on stability and rheological properties observed. The results showed the potential of CW organogels to stabilize and modify sensory attributes in bigels and emulgels for topical applications.  相似文献   

17.
Palm oil was hydrogenated under selective and nonselective conditions. Some of the hydrogenated samples were chosen for their physical characteristics and were diluted with 70% sunflower oil. A commercial hydrogenated palm olein (H-olein) was diluted up to 80% with canola oil. The diluted mixtures were evaluated for their polymorphic β' stability by a temperature-cycling procedure between 4 and 20°C. All of the mixtures were stable in the β' form. The dropping point and solid fat content of the mixtures were compared with those of commercial soft and stick margarines. Soft margarines can be prepared from mixtures of 20% H-olein and 80% unhydrogenated oil, and stick margarines from 40% H-olein and 60% liquid oil. If canola oil is the liquid oil, the saturated content in the soft formulation is 13% and that of a stick formulation 17%.  相似文献   

18.
白油W/O/W型多重乳状液的稳定性研究   总被引:5,自引:0,他引:5  
以多重乳状液相对体积为衡量标准,用显微镜直接观察,探讨了乳化剂的HLB值、质量分数、亲油亲水乳化剂体积比及油水的相比等对白油W/O/W型多重乳状液体系稳定性的影响。结果表明单一乳化剂体系中适宜的制备条件:乳液中乳化剂质量分数为12.2%,V(Span80)/V(Tween80)=7.5;适合多重乳液稳定的油水相比为:第一相体积比为2.5,第二相体积比为0.2。复合乳化剂体系中适宜的制备条件:第一相乳化剂的HLB值为6.5,V(复合乳化剂)/V(Tween80)=27.5,乳液中乳化剂质量分数为9.5%。  相似文献   

19.
Surface active properties such as surface and interfacial tension reductions and stability of oil-in-water (o/w) and water-in-oil (w/o) emulsions by alkyl glycoside fatty acid polyesters, a potential fat substitute, and emulsifier blends of alkyl glycoside polyesters and Ryoto sugar esters were investigated. Our results indicate that blending of lipophilic and hydrophilic emulsifying agents produces a synergistic effect on reduction of surface and interfacial tensions and may, in some cases, result in more stable emulsions. Alkyl glycoside polyesters may be suitable for w/o emulsions, such as margarine and butter, and their blends with hydrophilic emulsifiers will produce reduced calorie emulsifiers suitable for use in o/w emulsions, such as salad dressing. There appears to be great potential for using such emulsifier blends in food, cosmetics and pharmaceutical applications.  相似文献   

20.
The two layers of tuna oil-in-water emulsions containing different oil loads (5–10 wt%) and maltodextrin concentrations (10–20 wt%) were stabilized by a lecithin–chitosan membrane. The liquid emulsions were then spray dried at an inlet air temperature of 180 ± 2°C and an outlet air temperature of 85 ± 5°C. The characteristics of liquid emulsion (creaming and mean droplet size) and spray-dried microcapsules (moisture content, water activity, color, morphology, glass transition temperature, and encapsulation efficiency) were measured. The results suggest that two-layer oil-in-water emulsions are an effective system to produce high oil-loaded microcapsules, which may lead to its wide application for use in food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号