共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm. 相似文献
2.
Coaxial probes for scanning near-field microscopy 总被引:1,自引:0,他引:1
T. Leinhos O. Rudow M. Stopka A. Vollkopf & E. Oesterschulze 《Journal of microscopy》1999,194(2-3):349-352
This paper deals with the development of coaxial aperture tips integrated in a cantilever probe for combined scanning near-field infrared microscopy and scanning force microscopy. A fabrication process is introduced that allows the batch fabrication of hollow metal aperture tips integrated on a silicon cantilever. To achieve the coaxial tip arrangement a metal rod is deposited inside the hollow tip using the focused ion beam technique. Theoretical calculations with a finite integration code were performed to study the transmission characteristics of coaxial tips in comparison with conventional aperture probes. In addition, the influence of the geometrical design parameters of the coaxial probe on its optical behaviour is investigated. 相似文献
3.
A compact sensor head based on scanning force microscopy (SFM) using cantilever probes has been developed. The idea is to replace the microscope objective of a conventional optical microscope by this compact module and turn the optical microscope into a scanning force and near-field optical microscope with subwavelength resolution. We describe our concept and present initial results showing images of the object’s optical properties and surface topography recorded simultaneously. 相似文献
4.
We have demonstrated Raman spectroscopy using scanning near-field optical microscopy (SNOM). Photon tunnelling mode was employed, in which the sample is illuminated using an attenuated total reflection (ATR) configuration and the evanescent wave perturbed by the sample is picked up by a sharpened optical fibre probe. By this experimental arrangement Raman scattering from the optical fibre probe was greatly reduced, therefore we were able to excite the sample using more intense laser light compared to the illumination mode SNOM. Raman spectra of copper phthalocyanine (CuPc) were obtained in the off-resonance condition and without using surface-enhanced Raman scattering (SERS). 相似文献
5.
H. U. DANZEBRINK 《Journal of microscopy》1994,176(3):276-280
A brief explanation of the optoelectronic probe concept and a comparison between the implementation of passive waveguide probes and optoelectronic probes in scanning near-field optical microscopy (SNOM) is presented. The first probe realizations using cleaved semiconductor crystals and the work at present in progress using microfabricated Si pyramids are described. These crystals with evaporated metal electrodes forming a slit aperture with subwave-length dimensions work as metal–semiconductor–metal photodetectors. Their optical detection behaviour is investigated by measuring the intensity distribution of a laser focal point. Measurements where the external bias voltage is changed show that it is possible to modify the detection behaviour of the device because of the varying depletion widths. The last part of the article describes a concept where pyramidal probes should function simultaneously as sensors for scanning force microscopy (SFM) to measure topography and as optoelectronic probes for scanning near-field optoelectronic microscopy (SNOEM). 相似文献
6.
H. Kawashima M. Furuki† ‡ S. Tatsuura† M. Tian‡ Y. Sato‡ L. S. Pu‡ & T. Tani§ 《Journal of microscopy》2001,202(1):241-243
A near-field scanning optical microscope has been combined with a two-colour time-resolved pump-probe measurement system. It has a noise-equivalent transmittance change of 5.0 × 10−5 for a probe pulse with an intensity of 30 nW. The system has been used for evaluating molecular thin films that have a domain structure, particularly for observing a gate action of the single domains. The results include key features to understand an origin of the domains and suggest that the film composition is uniform over a distance of several micrometres. 相似文献
7.
T. Niwa Y. Mitsuoka K. Kato S. Ichihara N. Chiba M. Shin-Ogi K. Nakajima H. Muramatsu & T. Sakuhara 《Journal of microscopy》1999,194(2-3):388-392
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5 . 相似文献
8.
Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy
M. Yamaguchi Y. Sasaki H. Sasaki T. Konada Y. Horikawa A. Ebina T. Umezawa & T. Horiguchi 《Journal of microscopy》1999,194(2-3):552-557
A phase-change optical disc was observed using a reflection-mode scattering-type scanning near-field optical microscope (RS-SNOM). In an a.c.-mode SNOM image, the 1.2 μm × 0.6 μm recording marks were successfully observed although the data were recorded on the groove. In contrast, no recording marks could be resolved in a d.c.-mode SNOM image. These results are in good agreement with those from a numerical simulation using the finite difference time domain method. The resolution was better than 100 nm with a.c.-mode SNOM operation and the results indicate that recording marks in phase-change optical media can be directly observed with the RS-SNOM. 相似文献
9.
A novel technique for scanning near‐field optical microscopy capable of point‐contact current‐sensing was developed in order to investigate the nanometre‐scale optical and electrical properties of electrochromic materials. An apertureless bent‐metal probe was fabricated in order to detect optical and current signals at a local point on the electrochromic films. The near‐field optical properties could be observed using the local field enhancement effect generated at the edge of the metal probe under p‐polarized laser illumination. With regard to electrical properties, current signal could be detected with the metal probe connected to a high‐sensitive current amplifier. Using the current‐sensing scanning near‐field optical microscopy, the surface topography, optical and current images of coloured WO3 thin films were observed simultaneously. Furthermore, nanometre‐scale electrochromic modification of local bleaching could be performed using the current‐sensing scanning near‐field optical microscopy. The current‐sensing scanning near‐field optical microscopy has potential use in various fields of nanometre‐scale optoelectronics. 相似文献
10.
11.
We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000–6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe. 相似文献
12.
13.
Plasmon-coupled tip-enhanced near-field optical microscopy 总被引:3,自引:0,他引:3
Near the cut‐off radius of a guided waveguide mode of a metal‐coated glass fibre tip it is possible to couple radiation to surface plasmons propagating on the outside surface of the metal coating. These surface plasmons converge toward the apex of the tip and interfere constructively for particular polarization states of the initial waveguide mode. Calculations show that a radially polarized waveguide mode can create a strong field enhancement localized at the apex of the tip. The highly localized enhanced field forms a nanoscale optical near‐field source. 相似文献
14.
J. A. Veerman M. F. Garcia-Parajo L. Kuipers & N. F. Van Hulst 《Journal of microscopy》1999,194(2-3):477-482
The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe. Recently, we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics, better aperture definition and a flatter end face than conventional NSOM probes. We have determined the quality of these probes in four independent ways: by FIB imaging and by shear-force microscopy (both providing geometrical information), by far-field optical measurements (yielding throughput and polarization characteristics), and ultimately by single molecule imaging in the near-field. In this paper, we report on a new method using shear-force microscopy to study the size of the aperture and the end face of the probe (with a roughness smaller than 1.5 nm). More importantly, we demonstrate the use of single molecules to measure the full three-dimensional optical near-field distribution of the probe with molecular spatial resolution. The single molecule images exhibit various intensity patterns, varying from circular and elliptical to double arc and ring structures, which depend on the orientation of the molecules with respect to the probe. The optical resolution in the measurements is not determined by the size of the aperture, but by the high optical field gradients at the rims of the aperture. With a 70 nm aperture probe, we obtain fluorescence field patterns with 45 nm FWHM. Clearly, this unprecedented near-field optical resolution constitutes an order of magnitude improvement over far-field methods like confocal microscopy. 相似文献
15.
The newly developed inverted tapping-mode tuning-fork near-field scanning optical microscopy (TMTF-NSOM) is used to study the local near-field optical properties of strained AlGaInP/Ga0.4 In0.6 P low power visible multiquantum-well laser diodes. In contrast to shear-force mode NSOM, TMTF-NSOM provides the function to acquire the evanescent wave intensity ratio | I (2ω)|/| I (ω)| image, from which the evanescent wave decay coefficient q can be evaluated for a known tapping amplitude. Moreover, we probe the near-field stimulated emission spectrum, which gives the free-space laser light wavelength λo and the index of refraction n r of the laser diode resonant cavity. Once q , λo , and n r are all measured, we can determine the angle of incidence θo of the dominant totally internally reflected waves incident on the front mirror facet of the resonator. Determination of such an angle is very important in modelling the stability of the laser diode resonator. 相似文献
16.
A conjugate gradient method based on inverse algorithm is applied in this study to estimate the unknown space- and time-dependent heat source in aluminum-coated tapered optical fibers for scanning near-field optical microscopy, by reading the transient temperature data at the measurement positions. No prior information is available on the functional form of the unknown heat source in the present study; thus, it is classified as the function estimation in inverse calculation. The accuracy of the inverse analysis is examined by using the simulated exact and inexact temperature measurements. Results show that an excellent estimation on the heat source and temperature distributions in the tapered optical fiber can be obtained for all the test cases considered in this study. 相似文献
17.
基于散射式近场探测原理,设计并搭建了散射式太赫兹扫描近场光学显微系统(THz s-SNOM),实现了纳米量级空间分辨率的太赫兹近场显微成像测量。该系统以输出频率范围为0.1~0.3THz的太赫兹倍频模块为发射源,通过纳米探针的针尖产生纳米光源与样品相互作用,并将样品表面的倏逝波转化为可在远场测量的辐射波。通过探针逐点扫描样品表面,同时获得了样品表面的形貌图和太赫兹近场显微图。该系统的显微分辨率取决于探针针尖的曲率半径,而与太赫兹波的波长无关。使用该系统测量了金薄膜/硅衬底样品和石墨烯样品的近场显微图,结果表明,近场显微的空间分辨率优于60nm,波长与空间分辨率之比高达λ/26000。 相似文献
18.
H. U. Danzebrink TH. Dziomba T. Sulzbach O. Ohlsson C. Lehrer & L. Frey 《Journal of microscopy》1999,194(2-3):335-339
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode. 相似文献
19.
Fluorescently labelled myofibrils were imaged in physiological salt solution by near-field scanning optical microscopy and shear-force microscopy. These myofibrils were imaged in vitro , naturally adhering to glass while retaining their ability to contract. The Z-line protein structure of the myofibrils was antibody labelled and easily identified in the near-field fluorescence images. The distinctive protein banding structure of the myofibril was also seen clearly in the shear-force images without any labelling requirement. With the microscope in the transmission mode, resolution of the fluorescence images was degraded significantly by excessive specimen thickness (>1 μm), whereas the shear-force images were less affected by specimen thickness and more affected by poor adherence to the substrate. Although the exact mechanism generating contrast in the shear-force images is still unknown, shear-force imaging appears to be a promising new imaging modality. 相似文献
20.
A new microscope system that has the combined capabilities of a scanning near-field optical microscope (SNOM) and a scanning tunnelling microscope (STM) is described. This is achieved with the use of a single metallic probe tip. The distance between the probe tip and the sample surface is regulated by keeping the tunnelling current constant. In this mode of operation, information about the optical properties of the sample, such as its refractive index distribution and absorption characteristics, can be disassociated from the information describing its surface structure. Details of the surface structure can be studied at resolutions smaller than the illumination wavelength. The performance of the microscope is evaluated by analysing a grating sample that was made by coating a glass substrate with gold. The results are then compared with the corresponding SNOM and STM images of the grating. 相似文献