首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization of isotactic polypropylene (iPP) in an ethylene–propylene–diene rubber matrix (EPDM), crosslinked with dicumyl peroxide (DCP), has been studied. A discrepancy concerning the degree of crystallinity of the blends determined using different experimental techniques, has been discovered and an effort to explain it is made. iPP was found to recrystallize in EPDM in a manner, depending on the amount of plastomer added. Nucleation, being predominantly homogeneous for ‘pure’ iPP, becomes predominantly hetero-geneous for its blends with EPDM. The smaller the polypropylene content the more a defect crystalline phase is formed. The defects, as well as an orientation were shown to be responsible for the higher, in comparison with other methods, degree of crystallinity determined by wide-angle X-ray scattering. ©1997 SCI  相似文献   

2.
In this work, we attempted two different ways of processing to improve interfacial adhesion of polypropylene (PP) and ethylene–propylene–diene terpolymer (EPDM) by introducing maleic anhydride (MAH); In one way, the in situ grafting and dynamic vulcanization (ISGV) were performed simultaneously from PP and EPDM with MAH in the presence of dicumyl peroxide (DCP) in an intensive mixer. In another way, PP was first grafted with MAH and then the PP‐g‐MAH was blended with EPDM in the intensive mixer in the presence of DCP by the dynamic vulcanization (DV). It was found that the glass transition temperatures (Tgs) of both PP and EPDM phases were shifted to higher temperature as the EPDM content increased for the blends prepared by both IGSV and DV methods, mainly due to the crosslinking of EPDM. The higher Tgs and larger storage moduli were observed for the blends prepared by the ISGV method than those prepared by the DV method, while the morphology showed that the size reduction of dispersed particles in latter blends was larger than that of the former blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2777–2784, 2000  相似文献   

3.
A new copolymer of tris(2‐methoxyethoxy) vinylsilane (TMEVS)‐grafted ethylene–propylene–diene elastomer (EPDM‐g‐TMEVS) has been developed by grafting of TMEVS onto EPDM by using dicumylperoxide (DCP) initiator. The linear polystyrene blends (EPDM‐g‐TMEVS/PS) based on EPDM‐g‐TMEVS have been synthesized with varying weight percentages of polystyrene in a twin‐screw extruder. In a similar manner, the dynamically vulcanized and nanoclay‐reinforced polystyrene blends have also been developed using DCP and organically modified montmorillonite clay separately by means of a twin‐screw extruder. The grafting of TMEVS onto EPDM at allylic position present in the third monomer of EPDM has been confirmed by Fourier Transform infrared spectroscopy. The effect of silane‐grafted EPDM and concentration of nanoclay on mechanical properties of polystyrene blends has been studied as per ASTM standards. The morphological behavior of these blends has been investigated using scanning electron microscope. It was observed that the incorporation of silane‐grafted EPDM enhanced the impact strength and the percentage elongation of linear‐ and dynamically vulcanized blends. However, the values of tensile strength, flexural strength, flexural modulus, and hardness of the blends were found to be decreasing with the increase of silane‐grafted EPDM. In the case of nanoclay‐reinforced polystyrene blends, the values of impact strength, tensile strength, flexural strength, flexural modulus, and hardness were increased with an increase in the concentration of nanoclay. XRD studies have been carried out to confirm the formation of nanoclay‐reinforced EPDM‐g‐TMEVS/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The structure and properties of polyolefin blends of ethylene–propylene–diene terpolymer (EPDM) and polypropylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured with PP under shear with dicumyl peroxide (DCP) at different shear conditions (blend–cure). Blends were also prepared for comparison from EPDM which were dynamically cured in the absence of PP and blended later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastic composition were studied. In blend–cure, the melt viscosity increased with increasing DCP concentration in blends of 75% EPDM and 25% PP, but it decreased with increasing DCP concentration in blends of 75% PP and 25% EPDM. In cure–blend, however, the melt viscosity increased with increasing DCP concentration for all compositions. The melt viscosity decreased with increasing intensity of the shear mixing presumably due to the formation of the smaller segregated microdomain of the crosslinked EPDM gels in both blend–cure and cure–blend materials. The crystallization rate was higher in EPDM/PP blends than in PP homopolymer. The crystallization rates for various blending conditions were also compared.  相似文献   

5.
Polypropylene blends and composites with 5, 10, and 15 vol % of EPDM and 2, 4, and 6 vol % of untreated and treated wollastonite filler were examined by applying different techniques. Elastomeric ethylene/propylene/diene terpolymer (EPDM) component and wollastonite influenced the crystallization process of isotactic polypropylene (iPP) matrix in different ways. The nucleation of hexagonal β‐iPP, the increase of overall degree of crystallinity, and crystallite size of iPP were more strongly affected by wollastonite than the addition of EPDM was. Both ingredients also differently influenced the orientation of α‐form crystals in iPP matrix. Wollastonite increased the number of a*‐axis‐oriented α‐iPP lamellae plan parallel to the sample surface, whereas the addition of EPDM reoriented the lamellae. The orientation parameters of ternary composites exhibited intermediate values between those for binary systems because of the effects of both components. EPDM elastomer considerably affected well‐developed spherulitization of iPP, increasing the spherulite size. Contrary to EPDM, because of nucleating ability or crystal habit, wollastonite caused significantly smaller iPP spherulites. Small spherulites in ternary iPP/EPDM/wollastonite composites indicated that the wollastonite filler (even in smallest amounts) exclusively determined the morphology of ternary composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4072–4081, 2004  相似文献   

6.
Isotactic polypropylene (iPP): ethylene propylene diene monomer (EPDM) blend is one of the most suited compatible and miscible blends. The blends of iPP and EPDM (80:20) filled with BaCO3 nanoparticles (0.5, 1.5, 2.5 and 3 wt%) were prepared on Brabender Plasticorder, which was then subjected to injection molding to get dumbbell-shaped specimens. Meanwhile, BaCO3 nanoparticles (nBaCO3) were prepared using ultrasonic cavitation technique. The size and shape of nBaCO3 particle was confirmed using transmission electron microscope and found to be capsule shape of diameter ~40–60 nm with aspect ratio (l/d) of 2.2–2.5. The reduction in particle size of nBaCO3 leads to formation of uniform suspension. The solution was kept as such for long time so as to nullify the charges developed over the surface of nanoparticles. The mechanical properties of nBaCO3-reinforced iPP-EPDM blends were studied using universal testing machine and impact tester. Moreover, thermal properties were studied using flammability tester, vicat softening temperature, thermo gravimetric analyzer and differential scanning calorimeter (DSC). Dispersion of nBaCO3 in iPP-EPDM matrix was studied using scanning electron microscope and X-ray diffractometer. The mechanical and thermal properties of iPP-EPDM/nBaCO3 blends were found to be improved significantly with increasing amount of nBaCO3 up to 2.5 wt%, which is due to good compatibility in between iPP and EPDM with uniform dispersion of nBaCO3. Moreover, due to agglomeration at 3 wt% loading of nBaCO3 few of the properties found to be decreased marginally.  相似文献   

7.
The origins of elasticity in thermoplastic vulcanizates have been debated for the past decade. Previous modeling attempts provide numerical solutions that make assessment of constituent concentration and interaction unclear. A microcellular modeling approach is proposed and evaluated herein to describe the steady‐state behavior of dynamically vulcanized blends of ethylene‐propylene‐diene monomer (EPDM) and isotactic polypropylene (iPP). This approach provides an analytic result including terms for composition and cure state. Three types of deformation are accounted for: elastic and plastic deformation of iPP, elastic deformation of EPDM, and localized elastic and plastic rotation about iPP junction points. The viability of the constitutive model is evaluated in terms of iPP concentration and EPDM cure state.  相似文献   

8.
Two kinds of polymer blends, polyacetals (POMs) and ethylene–propylene–diene terpolymer (EPDM), have been prepared by mechanical blending. The rubbery EPDM was added to the rigid POM matrix to increase toughness. The mechanical, physical, thermal, dynamic mechanical, and morphological properties of these samples have been measured. The notched Izod impact strength and the elongation of the blends reaches a maximum at 7.5 wt % EPDM content. Scanning electron micrographs (SEM) showed that the domain sizes of EPDM vary from 0.25 to 1.0 μm and were independent of the composition. The POM/EPDM blends were determined to be immiscible by SEM, but showed single Tg behavior as determined by differential scanning calorimetry (DSC) and dynamic mechanical analyses up to 7.5 wt % EPDM. Because of that, the Tg's of POM and EPDM were very similar in value. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The effect of propylene–ethylene copolymers (PEc) with different ethylene‐unit contents on melting and crystallization behaviors of isotactic‐polypropylene (iPP) were investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results show that the addition of PEc decreases significantly crystallization temperature (Tc) of iPP, but slightly affects melting temperature (Tm). With increasing the ethylene‐unit content of the propylene–ethylene copolymers, the decrease in crystallization temperature of iPP is smaller. The PLM results show that the spherulite growth rate decreases with increasing crystallization temperature for iPP and iPP/PEc blends. The higher the ethylene‐unit content of the copolymers is, the lower the spherulite growth rate (G) of iPP/PEc blends is. The influence of the PEc on nucleation rate constant (Kg) and fold surface energy (σe) of iPP was examined by nucleation theory of Hoffman and Lauritzen. The results show that both Kg and σe of iPP/PE20(80/20) and iPP/PE23(80/20) blends are higher than those of iPP, demonstrating that the overall crystallization rate of iPP/PEc blends decreased as compared to that of iPP, resulting from the decrease of the nucleation rate and the spherulite growth rate of iPP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

11.
The crystallization of isotactic polypropylene (iPP) in its blends with ethylene–propylene–diene terpolymer (EPDM), reinforced with different fibers, is described in this work. In particular, the effects of both the fibers and the EPDM on the crystallization kinetics and morphology of iPP are analyzed. The study was performed using differential scanning calorimetry (DSC) in dynamic and isothermal conditions and optical microscopy. It was found that all the fibers act as effective nucleant agents on iPP crystallization independently of the blend composition. The results obtained highlight the accelerating effect of the fibers and of the EPDM on the PP crystallization up to a certain EPDM percentage. The halftime of crystallization, τ1/2, and the overall crystallization rate, Kn, increase in the presence of all the fibers analyzed, showed the aramidic ones the most effective. The isothermal crystallization kinetics of ternary composites based on PP–EPDM blend matrices reinforced with different types of fibers can be modeled using the Avrami equation. On the other hand, the kinetic curves obtained under nonisothermal conditions provide a further confirmation of the nucleating action of the fibers on the PP crystallization. Optical polarizing microscopy was also used to investigate the effect of EPDM on the spherulite growth and the transcrystallinity phenomenon on the surface of the fibers. The results of such analysis showed that the transcrystallinity phenomenon is hindered at high rubber percentages. As in the case of the rate of crystallization, the highest proportion of transcrystallinity was observed in the presence of the aramidic fibers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1063–1074, 2001  相似文献   

12.
A novel graft copolymer of unsaturated propylene with styrene (uPP-g-PS) was added to binary blends of isotactic polypropylene (iPP) and atactic polystyrene (aPS) with a view to using such a copolymer as compatibilizer for iPP/aPS materials. Differential scanning calorimetry, optical microscopy, scanning electron microscopy (SEM), wide angle X-ray scattering, and small angle X-ray scattering (SAXS) techniques have been carried out to investigate the phase morphology and structure developed in solution-cast samples of iPP/aPS/uPP-g-PS ternary blends. It was found that the uPP-g-PS addition can provide iPP/aPS-compatibilized materials and that the extent of the achieved compatibilization is composition-dependent. Blends of iPP and aPS exhibited a coarse domain morphology that is characteristic of immiscible polymer systems. By adding 2% (wt/wt) of uPP-g-PS copolymer a very broad particle-size distribution was obtained, even though the particles appeared coated by a smooth interfacial layer, as expected according to a core–shell interfacial model. With increasing uPP-g-PS content (5% wt/wt), a finer dispersion degree of particles, together with morphological evidence of interfacial adhesion, was found. With further increase of uPP-g-PS amount (10% wt/wt) the material showed such a homogeneous texture that neither domains of dispersed phase nor holes could be clearly detected by SEM. The type of interface developed in such iPP/aPS/uPP-g-PS blends was accounted for by an interfacial interpenetration model. The iPP crystalline texture, size, neatness, and regularity of iPP spherulites crystallized from iPP/aPS/uPP-g-PS blends were found to decrease when the copolymer content was slightly increased. Assuming, for the iPP spherulite fibrillae, a two-phase model constituted by alternating parallel crystalline lamellae and amorphous layers, it was shown by SAXS that the phase structure generated in iPP/aPS/uPP-g-PS blends is characterized by crystalline lamellar thickness (Lc) and interlamellar amorphous layer thickness (La) higher than that shown by plain iPP; the higher the copolymer content, the higher the Lc and La. It should be remarked that considerably larger increases have been found in La values. Such SAXS results have been accounted for by assuming that a cocrystallization phenomenon between propylenic sequences of the uPP-g-PS copolymer and iPP occurs and that during such a process PS chains grafted into copolymer sequences remain entrapped in iPP interlamellar amorphous layers, where they form their own separate domains. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1539–1553, 1997  相似文献   

13.
Blends of ethylene propylene diene rubber (EPDM) and thermoplastic polyurethane (TPU) have been studied to understand the compatibility and morphology. The study was initially done with unmodified EPDM and subsequently with modified EPDM through maleation process. Mechanical properties of unmodified EPDM blends are improved with the addition of TPU. However, the appearance of two T gs even at lower concentrations of PU in the blends indicates that the blends are incompatible. Blends of maleated EPDM with TPU showed a single T g and further improvement in mechanical properties which is attributed to the improvement in compatibility as also confirmed by SEM analysis.  相似文献   

14.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

15.
交联硫化体系对PP/POE/EPDM热塑性弹性体性能的影响   总被引:1,自引:0,他引:1  
采用动态硫化法制备聚丙烯/聚烯烃弹性体/三元乙丙橡胶(PP/POE/EPDM)共混型热塑性弹性体,研究了交联前后不同POE/EPDM并用对比体系力学性能的影响。采用交联剂过氧化二异丙苯(DCP)及DCP/S硫化体系对PP/POE/EPDM体系进行硫化,研究了力学性能的变化。结果表明,EPDM可有效降低材料的硬度和断裂永久变形。助交联剂硫黄(S)对PP/POE/EPDM体系有较好的硫化作用,固定DCP用量为3份,S用量为0.4份时,体系力学性能最佳,交联对体系硬度影响很小。  相似文献   

16.
Thermal and morphological studies have been performed on polymer blends based on ethylene–octene copolymer (PEE)/PP and ethylene–propylene–diene copolymer (EPDM)/PP. The thermal and morphological behavior of PEE, EPDM, PEE/PP, and EPDM/PP systems were analyzed by differential scanning calorimetry (DSC) and polarizing light microscopy, respectively. It was observed that the behaviors of crystallization kinetics of PEE/PP and EPDM/PP blends were similar. It was also observed that addition up to 10–20% (w/w) of elastomers resulted in increasing of spherulite size. The heat of fusion (ΔHf) and crystallinity degree of PEE/PP and EPDM/PP systems decreased when the elastomer contents were increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3530–3537, 2001  相似文献   

17.
Meltrheological behavior, phase morphology, and impact properties of isotactic‐polypropylene (iPP)‐based blends containing ethylene–propylene copolymer (EPR) synthesized by means of a titanium‐based catalyst with very high stereospecific activity (EPRTi) were compared to those of iPP/EPR blends containing EPR copolymers synthesized by using a traditional vanadium‐based catalyst (EPRV). The samples of EPR copolymers were synthesized ad hoc. They were characterized by comparable propylene content, average molecular masses, and molecular mass distribution in order to assess the effects of distribution of composition and sequence lengths of the structural units on the structure–properties correlations established in the melt and in the solid state while studying different iPP/EPR pairs.1–5 Differential scanning calorimetry, (DSC), wide‐angle X‐ray spectroscopy (WAXS), small‐angle X‐ray (SAXS), and scanning electron microscopy (SEM) investigations showed that the EPRTi chain is characterized by the presence of long ethylenic sequences with constitutional and configurational regularity required for crystallization of the polyethylene (PE) phase occurring, whereas a microstructure typical of a random ethylene–propylene copolymer was exhibited by the EPRV copolymer. The different intra‐ and intermolecular homogeneity shown by such EPR phases was found to affect their melt rheological behavior at the temperatures of 200 and 250°C; all the EPRTi dynamic–viscoelastic properties resulting were lower than that shown by the EPRV copolymer. As far as the melt rheological behavior of the iPP/EPRV and iPP/EPRTi blends was concerned, both the iPP/EPR pairs are to be classified as “negative deviation blends” with G′ and G" values higher than that shown by the plain components. The extent of the observed deviation in the viscosity values and of the increase in the amounts of stored and dissipated energy shown by such iPP/EPR pairs was found to be dependent on copolymer microstructure, being larger for the melts containing the EPRTi copolymer. The application of the Cross–Bueche equation also confirmed that, in absence of shear, the melt phase viscosity ratio is the main factor in determining the viscosity of iPP/EPR blends and their viscoelastic parameters. The general correlation established between EPR dispersion degree (range of particle size and number‐average particle size), as determined in injection‐molded samples, and melt phase viscosity ratio (μ) was ratified; the type of dependence of EPR size upon μ value was in qualitative agreement with the prediction of the Taylor–Tomotika theory. Contrary to expectation,1–5 for test temperature close to iPP Tg, EPRV particles ranging in size between 0.75 and 1.25 μm resulted and were more effective than EPRTi particles, ranging in size between 0.25 and 0.75 μm, in promoting multiple craze formation. Also taking into account the SAXS results, revealed that the molecular superstructure (i.e., crystalline lamellar thickness and amorphous interlayer) of the iPP matrix is unaffected by both the presence of EPRTi and EPRV phase. The above finding was related to the ethylenic crystallinity degree shown by the EPRTi copolymer. In particular, such a degree of crystallinity was supposed to deteriorate toughening by decreasing the tie molecules density in the EPRTi domains, notwithstanding the beneficial effect of the ethylenic lamellar buildup. For test temperature close to room temperature, the ductile behavior exhibited by the iPP/EPRTi blends was accounted for by a predominant shear yielding fracture mechanism probably promoted by a high concentration of interlamellar tie molecules among iPP crystallites in agreement with DSC results. Nonisothermal crystallization experiments showed, in fact, that the crystallization peak of the iPP phase from iPP/EPRTi melt is shifted to higher temperatures noticeably, thus indicating a material characterized by a comparatively higher number of spherulites per unit value grown at lower apparent undercooling values. Accordingly, WAXS analysis revealed comparatively higher iPP crystal growth in the directions perpendicular to the crystallographic planes (110) and (040) of the iPP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 701–719, 1999  相似文献   

18.
A comparative study of two ethylene‐propylene‐diene rubbers (EPDM) polymerized by both conventional (Ziegler–Natta catalysts) and new techniques (metallocene catalysts) is presented. For this purpose, thermoplastic elastomers based on isotactic polypropylene (iPP) and EPDM blends at different percentages were prepared and their properties examined. In particular, the processing behavior and mechanical properties are reported. So, the flow properties analyzed by torque value, melt index, and rheological study reveal that the blends containing EPDM synthesized by metallocene catalyst present a smaller viscosity, thus offering better processing behavior. On the other hand, the mechanical properties show that metallocene EPDM rubbers give rise to more elastic materials with a higher deformation at break and resilience as well as a lower compression set. Moreover, the effectiveness of these innovative EPDM rubbers as impact modifiers for PP is demonstrated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 25–37, 2002  相似文献   

19.
Morphologies of polyethylene–ethylene/propylene/diene monomer (PE/EPDM) particles in 93/7 polypropylene (PP)/PE blends were investigated. SEM micrographs of KMnO4‐etched cut surfaces and fracture surfaces of the blends revealed the existence of the “flake” structure. In the particles, crystalline PE formations with flake shape, which remain after etching, are called flakes. In addition to the PE‐crystalline flakes, amorphous PE, located between PE crystalline lamellae and EPDM rubber, complement the flake structure. The flakes are usually linked with the PP matrix, as seen in the heptane‐treated cut surfaces. These links, although observed with compatibilized samples, originate from the crystalline nature of PE particles, if no compatibilizer is added. Separately, the morphology of Royalene (consisting of high‐density PE and EPDM rubber, used as a PP/PE compatibilizer) was investigated by low‐voltage scanning TEM. The interaction of the components in the PE/EPDM blends can explain the formation of the flakes and toughening of the PP/PE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3087–3092, 2003  相似文献   

20.
A study of the dynamic complex and steady shear viscosity of isotactic polypropylene (iPP), ethylene–propylene diene terpolymer rubber (EPDM) and three different blends of both polymers are presented over a range of temperatures and frequencies. Moreover, the processability of these materials is studied through torque measurements during blend mixing. The results obtained show that the viscosity gradually increases with rubber content in the blend and decreases with both temperature and frequency. Plots of η″ versus η′ (Cole–Cole plots) show that the blend with the lower rubber content (25%), has a certain rheological compatibility with neat PP. Furthermore, torque curves measured during blend mixing confirm these results, demonstrating that the blend with 25% of elastomer has a similar behavior of iPP during processing. To analyze the morphological structure of the blends, a dynamic mechanical analysis of the solid state is also presented. It is observed that the blends have two distinct values of Tg close to the corresponding values of the pure polymers, confirming that this type of blends based on a semicrystalline polymer and an amorphous elastomer forms a two‐phase system with a limited degree of miscibility between both components. In addition, the polymer present with the higher concentration forms the continuous phase and controls the rheological properties of the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1–10, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号