首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two computer codes for simulating the backscattered, transmitted, and secondary-electron signals from targets in a scanning electron microscope are described. The first code, MONSEL-II, has a model target consisting of three parallel lines on a three-layer substrate, while the second, MONSEL-III, has a model target consisting of a two-by-two array of finite lines on a three-layer substrate. Elastic electron scattering is determined by published fits to the Mott cross section. Both plasmon-generated electrons and ionized valence electrons are included in the secondary production. An adjustable quantity, called the residual energy loss rate, is added to the formula of Joy and Luo to obtain the measured secondary yield. The codes show the effects of signal enhancement due to edge transmission, known as blooming, as well as signal reduction due to neighboring lines, known as the “black-hole” effect.  相似文献   

2.
3.
Common and different aspects of scanning electron microscope (SEM) and scanning ion microscope (SIM) images are discussed from a viewpoint of interaction between ion or electron beams and specimens. The SIM images [mostly using 30 keV Ga focused ion beam (FIB)] are sensitive to the sample surface as well as to low-voltage SEM images. Reasons for the SIM images as follows: (1) no backscattered-electron excitation; (2) low yields of backscattered ions; and (3) short ion ranges of 20–40nm, being of the same order of escape depth of secondary electrons (SE) [=(3–5) times the SE mean free path]. Beam charging, channeling, contamination, and surface sputtering are also commented upon.  相似文献   

4.
The main features of a three-dimensional (3-D) Monte Carlo software system (Mc3D), designed for the simulation of electron scattering and image contrast in a scanning electron microscope, are reported. Before simulating electron trajectories in the sample, impingement of the incident electron beam is described by introducing the idea of a virtual scan path in 3-D space. A general and concise algorithm is given for simulating the intersection of electron trajectories leaving the sample onto multidetector entrance apertures distributed in 3-D space. By optimising the object-oriented design in conjunction with the use of a process-oriented and data-oriented code structure, Mc3D is capable of simulating microscopic analysis of a sample with a 3-D geometry or structure that can be expressed with formulae. Three examples of the use of Mc3D are given. The first is for linescans across a block of SiO2 on top of a Si substrate; the second is for a stripe of SiO2 embedded in a Si substrate. Finally, the simulation of Auger linescans across an Au overlay on Si is compared with experimental results. The relationships between experimental linescans and the true beam impact positions on the sample are revealed through the virtual scan path. An edge effect, parallel-edge enhancement, is predicted when the incident electron beam size, the distance of impact position to the terrace edge, and the inelastic mean free path of the Auger electron from a given element are comparable, and the linescan is parallel to the terrace edge. All three examples demonstrate the sensitivity of image contrast to the disposition of the sample with respect to the electron column and the detector position.  相似文献   

5.
Seeger A  Fretzagias C  Taylor R 《Scanning》2003,25(5):264-273
A scanning electron microscope (SEM) simulator was developed based on the models used in the MONSEL software. This simulator extends earlier work by introducing an object-oriented framework and adding optimization methods based on precomputation of electron trajectories. Several optimizations enable speedup by factors of 5-100 on a single processor over unoptimized simulations without introducing additional approximations. The speedup for a particular surface depends on the self-similarity of the surface at the scale of the electron penetration depth. We further accelerate by parallelizing the calculations for a total speedup of about 100-2000 on 30 processors. The goal of this work was to create a system capable of simulating a quantitatively accurate SEM image of a relatively unconstrained surface. Results of this work include simulation software, optimization algorithms, performance measurements with various optimizations, and examples of simulated images.  相似文献   

6.
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.  相似文献   

7.
Zhang P  Wang HY  Li YG  Mao SF  Ding ZJ 《Scanning》2012,34(3):145-150
Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.  相似文献   

8.
Charging effects of scanning electron microscopes on the linewidth metrology of polymethylmethacrylate (PMMA) insulatorpatterns are investigated using Monte Carlo simulation. It is first revealed in detail how the nonunity yield of electron generation in the PMMA target leads to local charge accumulation and affects the image profile of secondary electrons as charging develops. Then the measurement offset due to charging effects is identified for various target patterns of isolated and array types. Finally, it is concluded that the measurement uncertainty caused by the measurement offset exceeds the error budget limit that will be allowed in the linewidth metrology of the next generation of semiconductors.  相似文献   

9.
Ishitani T  Ohya K 《Scanning》2003,25(4):201-209
Monte Carlo simulations have been carried out to compare the spatial spreads of secondary electron (SE) information in scanning ion microscopy (SIM) with scanning electron microscopy (SEM). Under Ga ion impacts, the SEs are excited by three kinds of collision-partners, that is, projectile ion, recoiled target atom, and target electron. The latter two partners dominantly contribute to the total SE yield gamma for the materials of low atomic number Z2. For the materials of high Z2, on the other hand, the projectile ions dominantly contribute to gamma. These Z2 dependencies generally cause the gamma yield to decrease with an increasing Z2, in contrast with the SE yield delta under electron impacts. Most of the SEs are produced in the surface layer of about 5lambda in depth (lambda: the mean free path of SEs), as they are independent of the incident probe. Under 30 keV Ga ion impacts, the spatial spread of SE information is roughly as small as 10 nm, decreasing with an increasing Z2. Under 10 keV electron impacts, the SEI excited by the primary electrons has a small spatial spread of about 5lambda, but the SEII excited by the backscattered electrons has a large one of several 10 to several 100 nanometers, decreasing with an increasing Z2. The main cause of a small spread of SE information at ion impact is the short ranges of the projectile ions returning to the surface to escape as backscattered ions, the recoiled target atoms, and the target electrons in collision cascade. The 30 keV Ga-SIM imaging is better than the 10 keV SEM imaging in spatial resolution for the structure/material measurements. Here, zero-size probes are assumed.  相似文献   

10.
Wight SA 《Scanning》2001,23(5):320-327
This work describes the comparison of experimental measurements of electron beam spread in the environmental scanning electron microscope with model predictions. Beam spreading is the result of primary electrons being scattered out of the focused beam by interaction with gas molecules in the low-vacuum specimen chamber. The scattered electrons form a skirt of electrons around the central probe. The intensity of the skirt depends on gas pressure in the chamber, beam-gas path length, beam energy, and gas composition. A model has been independently developed that, under a given set of conditions, predicts the radial intensity distribution of the scattered electrons. Experimental measurements of the intensity of the beam skirt were made under controlled conditions for comparison with model predictions of beam skirting. The model predicts the trends observed in the experimentally determined scattering intensities; however, there does appear to be a systematic deviation from the experimental measurements.  相似文献   

11.
Secondary fluorescence induced by photoelectric absorption of x-rays generated by an electron beam can occur when the characteristic x-ray energy of material “A” exceeds the critical excitation energy of material “B.” An expression is developed to calculate secondary fluorescence across a planar boundary from a discrete source placed at any (X, Y, Z) coordinates relative to the boundary. The expression can be incorporated into a Monte Carlo electron trajectory simulation which calculates the discrete distribution of primary x-ray generation.  相似文献   

12.
Li HM  Ding ZJ 《Scanning》2005,27(5):254-267
A new Monte Carlo technique for the simulation of secondary electron (SE) and backscattered electron (BSE) of scanning electron microscopy (SEM) images for an inhomogeneous specimen with a complex geometric structure has been developed. The simulation is based on structure construction modeling with simple geometric structures, as well as on the ray-tracing technique for correction of electron flight-step-length sampling when an electron trajectory crosses the interface of the inhomogeneous structures. This correction is important for the simulation of nanoscale structures of a size comparable with or even less than the electron scattering mean free paths. The physical model for electron transport in solids combines the use of the Mott cross section for electron elastic scattering and a dielectric function approach for electron inelastic scattering, and the cascade SE production is also included.  相似文献   

13.
This paper reports a Monte Carlo simulation where a single atom scattering model is adopted. The element taking part in each electron-atom interaction is selected on the basis of its contribution eitherto the total elastic cross section or to the electron's mean free path. Both Rutherford and Mott scattering are considered, with the continuous slowing down process of Bethe used to calculate the energy loss to the system. The backscattered electron coefficients show good agreement with experimental results from a large group of low atomic number materials when using a model which selects the scattering atom by its contribution to the whole compound calculated from its atomic fraction of the total elastic cross-section.  相似文献   

14.
Line-scan profile is always broadened due to the probe shape of the primary electron (PE) beam in scanning electron microscopy (SEM), which leads to an inaccurate dimension metrology. Currently, the effective electron beam shape (EEBS) is suggested as the broadening function to overcome this issue for theoretical analysis, rather than the widely used Gaussian profile. However, EEBS is almost impossible to be acquired due to it strongly depends on both the sample topography and the electron beam focusing condition, which makes it is impossible to be applied in practical analysis. Taking the case of gate linewidth measurement, an approach is proposed to find a best-fit traditional Gaussian profile, which can optimally replace the EEBS in the case of the same sample structure and experimental condition for construction of a database of the parameter in traditional Gaussian profile. This approach is based on the use of the ideal and broadened line-scan profiles which are both obtained from Monte Carlo (MC) simulation, but respectively by an ideal and a focusing incident electron beam model. The expected value of parameter can be obtained through deconvoluting (here using a maximum-entropy algorithm) the broadened line-scan profile then fitting it to the ideal profile. Experimenters can benefit from this database to obtain true line-scan profiles for accurate gate linewidth measurement. This work should prove useful for samples of other structures and be an extension of the database in the future.  相似文献   

15.
Vladár AE  Radi Z  Postek MT  Joy DC 《Scanning》2006,28(3):133-141
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.  相似文献   

16.
Accurate spatial measurements in a scanning electron microscope (SEM) require calibration of the magnification as a function of working distance and microscope operating conditions. This work presents the results of the calibration of an environmental SEM for the accurate spatial measurement of dimensions and areas in experiments, both for the measurement of strain in steel specimens under applied loads and the measurement of dimensional changes in timber with changes in relative humidity.  相似文献   

17.
M. Toth  M. R. Phillips 《Scanning》1998,20(6):425-432
This work demonstrates the validity of approximating cathodoluminescence generation throughout the electron interaction volume by the total electron energy loss profile. The energy loss profiles in multilayer specimens were accurately calculated using the Monte Carlo simulation CASINO. Resolution of cathodoluminescence images can be estimated from the electron beam spot diameter, the electron penetration range, and the minority carrier diffusion length.  相似文献   

18.
Eric Doehne 《Scanning》1997,19(2):75-78
Spurious x-ray signals, which previously prevented high-resolution energy-dispersive x-ray analysis (EDS) in the environmental scanning electron microscope (ESEM), can be corrected using a simple method presented here. As the primary electron beam travels through the gas in the ESEM chamber, a significant fraction of the primary electrons is scattered during collisions with gas molecules. These scattered electrons form a broad skirt that surrounds the primary electron beam as it impacts the sample. The correction method assumes that changes in the width of the electron skirt with pressure are less important than changes in the skirt intensity; this method works as follows: The influence of the gas on the overall x-ray data is determined by acquiring EDS spectra at two pressures. Subtracting the two spectra provides us with a difference spectrum which is then used to correct the original data, using extrapolation, back to the x-ray spectrum expected under high-vacuum conditions. Low-noise data are required to resolve small spectral peaks; however, the principle should apply equally to x-ray maps and even to low-magnification images.  相似文献   

19.
G. C. Rosolen  W. D. King 《Scanning》1998,20(7):495-500
We have developed an automated image alignment system for the scanning electron microscope (SEM). This system enables specific locations on a sample to be located and automatically aligned with submicron accuracy. The system comprises a sample stage motorization and control unit together with dedicated imaging electronics and image processing software. The standard SEM sample stage is motorized in the X and Y axes with stepping motors which are fitted with rotary optical encoders. The imaging electronics are interfaced to beam deflection electronics of the SEM and provide the image data for the image processing software. The system initially moves the motorized sample stage to the area of interest and acquires an image. This image is compared with a reference image to determine the required adjustments to the stage position or beam deflection. This procedure is repeated until the area imaged by the SEM matches the reference image. A hierarchical image correlation technique is used to achieve submicron alignment accuracy in a few seconds. The ability to control the SEM beam deflection enables the images to be aligned with an accuracy far exceeding the positioning ability of the SEM stage. The alignment system may be used on a variety of samples without the need for registration or alignment marks since the features in the SEM image are used for alignment. This system has been used for the automatic inspection of devices on semiconductor wafers, and has also enabled the SEM to be used for direct write self-aligned electron beam lithography.  相似文献   

20.
Wang P  Yang H  Ran Y  Li C 《Scanning》2011,33(1):41-44
Leukonychia is a medical term for white discoloration appearing on nails. The pathophysiologic mechanisms that cause white discoloration are not entirely clear. We processed a case of leukonychia with scanning electron microscope observation and found many crispy, obviously dissociated "layers" in the lower part of the white nail plate. The dissociated "layers" were composed of thick, loose, coarse keratin bundles intertwined with each other. We believe the dissociated "layers" are related to the clinically noted white discoloration appearing on the nails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号