首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cation/proton antiporters play a major role in the control of cytosolic ion concentrations in prokaryotes and eukaryotes organisms. In yeast, we previously demonstrated that Vnx1p is a vacuolar monovalent cation/H+ exchanger showing Na+/H+ and K+/H+ antiporter activity. We have also shown that disruption of VNX1 results in an almost complete abolishment of vacuolar Na+/H+ exchange, but yeast cells overexpressing the complete protein do not show improved salinity tolerance. In this study, we have identified an autoinhibitory N-terminal domain and have engineered a constitutively activated version of Vnx1p, by removing this domain. Contrary to the wild type protein, the activated protein has a pronounced effect on yeast salt tolerance and vacuolar pH. Expression of this truncated VNX1 gene also improves Arabidopsis salt tolerance and increases Na+ and K+ accumulation of salt grown plants thus suggesting a biotechnological potential of activated Vnx1p to improve salt tolerance of crop plants.  相似文献   

2.
Ergosterol is a prominent component of the yeast plasma membrane and essential for yeast cell viability. It is synthesized in the endoplasmic reticulum and transported to the plasma membrane by nonvesicular mechanisms requiring carrier proteins. Oxysterol-binding protein homologues and yeast StARkin proteins have been proposed to function as sterol carriers. Although many of these proteins are capable of transporting sterols between synthetic lipid vesicles in vitro, they are not essential for ergosterol transport in cells, indicating that they may be functionally redundant with each other or with additional—as yet unidentified—sterol carriers. To address this point, we hypothesized that sterol transport proteins are also sterol-binding proteins (SBPs), and used an in vitro chemoproteomic strategy to identify all cytosolic SBPs. We generated a cytosol fraction enriched in SBPs and captured the proteins with a photoreactive clickable cholesterol analogue. Quantitative proteomics of the captured proteins identified 342 putative SBPs. Analysis of these identified proteins based on their annotated function, reported drug phenotypes, interactions with proteins regulating lipid metabolism, gene ontology, and presence of mammalian orthologues revealed a subset of 62 characterized and nine uncharacterized candidates. Five of the uncharacterized proteins play a role in maintaining plasma membrane integrity as their absence affects the ability of cells to grow in the presence of nystatin or myriocin. We anticipate that the dataset reported here will be a comprehensive resource for functional analysis of sterol-binding/transport proteins and provide insights into novel aspects of non-vesicular sterol trafficking.  相似文献   

3.
Candida versatilis is a yeast with a complex salt-tolerant system. It can maintain normal physiological activities and metabolic fermentation under a high-salt environment. The cellular mechanisms of adaptation to salt stress in strains of a wild type of C. versatilis (WT) and S3–5, genome shuffling strains of C. versatilis with improved tolerance to salt, were investigated. The content of intra- and extra-cellular glycerol, intra-cellular Na+, as well as membrane fluidity and permeability, were determined under salt-stressed yeast growth conditions. The results showed that Na+/H+-antiporter played a primary role in Na+ extrusion and H+-ATPase has been associated with yeast survival under salt stress. Considerable amounts of glycerol were produced and secreted by the yeast to outside the cell under this salt stress. Changes in the portion of membrane saturated and unsaturated fatty acid composition of C. versatilis in response to osmotic stress lead to membrane permeability and fluidity decreases. They could restrict the influx of Na+, enhance H+-ATPase activity, and prevent leakage of glycerol across the cell membrane under osmotic stress. The salt tolerance of genome shuffled strain S3–5 was higher than WT. It could be correlated with a higher level of intra-cellular accumulation of glycerol and sodium ions in cells of S3–5 than WT as well as a higher portion of oleic fatty acid (C18: 1) and a lower level of linoleic acid (C18: 2) in cell membranes of the studied yeast mutant. It can be concluded that S3–5 improved physiological regulatory mechanisms of response to salt stress, such as decreased membrane fluidity and a permeability that rapidly adjusted to osmotic stress.  相似文献   

4.
Debaryomyces hansenii showed an increased growth in the presence of either 1m KCl or 1m NaCl and a low acidification of the medium, higher for the cells grown in the presence of NaCl. These cells accumulated high concentrations of the cations, and showed a very fast capacity to exchange either Na+ or K+ for the opposite cation. They showed a rapid uptake of 86 Rb+ and 22 Na+ . 86 Rb+ transport was saturable, with Km and Vmax values higher for cells grown in 1m NaCl. 22 Na+ uptake showed a diffusion component, also higher for the cells grown with NaCl. Changes depended on growth conditions, and not on further incubation, which changed the internal ion concentration. K+ stimulated proton pumping produced a rapid extrusion of protons, and also a decrease of the membrane potential. Cells grown in 1m KCl showed a higher fermentation rate, but significantly lower respiratory capacity. ATP levels were higher in cells grown in the presence of NaCl; upon incubation with glucose, those grown in the presence of KCl reached values similar to the ones grown in the presence of NaCl. In both, the addition of KCl produced a transient decrease of the ATP levels. As to ion transport mechanisms, D. hansenii appears to have (a) an ATPase functioning as a proton pump, generating a membrane potential difference which drives K+ through a uniporter; (b) a K+ /H+ exchange system; and (c) a rapid cation/cation exchange system. Most interesting is that cells grown in different ionic environments change their studied capacities, which are not dependent on the cation content, but on differences in their genetic expression during growth. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A 43,481 bp fragment from the left arm of chromosome XIV of Saccharomyces cerevisiae was sequenced. A gene for tRNAphe and 23 non-overlapping open reading frames (ORFs) were identified, seven of which correspond to known yeast genes: MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1. One ORF may correspond to the yet unindentified yeast adenosine deaminase gene. Among the 15 other ORFs, four exhibit known signatures, which include a protein tyrosine phosphatase, a cytoskeleton-associated protein and two ATP-binding proteins, four have similarities with putative proteins of yeast or proteins from other organisms and seven exibit no significant similarity with amino acid sequences described in data banks. One ORF is identical to yeast expressed sequence tags (EST) and therefore corresponds to an expressed gene. Six ORFs present similarities to human dbESTs, thus identifying motifs conserved during evolution. Nine ORFs are putative transmembrane proteins. In addition, one overlapping and three antisense ORFs, which are not likely to be functional, were detected. The sequence has been deposited in the EMBL data bank under Accession Number Z46843.  相似文献   

6.
Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+/H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Vacuoles were isolated from Yarrowia lipolytica yeast cells taken at various growth phases under carbon or nitrogen limitation. Vacuoles from the cells at the logarithmic growth phase showed a high activity of vacuolar H+-ATPase (0·9–1·1 U/mg protein) and efficiently generated chemical proton gradient and membrane potential across the tonoplast. Ca2+- and citrate transport were found to be maximal at this growth phase. At growth retardation and then in the stationary phase all the parameters studied decreased irrespective of the method of growth limitation. The citrate-transporting activity of vacuoles completely disappeared at growth retardation, also irrespective of the limitation method and irrespective of whether yeast cells overproduced citrate in the culture medium. The citrate-transporting system of Y. lipolytica vacuolar membrane is concluded not to be involved in citrate efflux and this efflux is probably performed by the plasmalemma transport system.  相似文献   

8.
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+-ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+, K+, and H+, both under normal growth conditions and in response to stress.  相似文献   

9.
为了提高鲁氏接合酵母抗高盐胁迫能力,作者探索了添加吡哆醇对鲁氏接合酵母高盐胁迫耐受的影响。通过测量甘油、海藻糖含量以及Na+/K+-ATP酶活性等一系列生理表征来验证鲁氏接合酵母高盐适应性的变化。实验结果表明,鲁氏接合酵母在高盐胁迫条件下外源添加吡哆醇,在延滞期时,菌株提前24 h积累细胞内甘油,并且加快了细胞内海藻糖分解代谢速率;在对数期时,细胞内钠钾比率(Na+/K+)降低82.3%,细胞膜上Na+/K+-ATP酶活性增加16.9%,2-苯乙醇产量(质量浓度)提高6.42倍;在稳定期时,生物量提高10.6%,乙醇产量(质量浓度)提高5%,2-苯乙醇产量(质量浓度)提高1.26倍。综上所述,吡哆醇的添加能有效提高鲁氏接合酵母的高盐胁迫耐受能力,进一步增强了鲁氏接合酵母在酱油等高盐发酵食品中的应用前景。  相似文献   

10.
We have determined the complete nucleotide sequence of a 44 420 bp DNA fragment from chromosome XIV of Saccharomyces cerevisiae. The sequence data revealed 23 open reading frames (ORFs) larger than 300 bp, covering 73·5% of the sequence. The ORFs N2418, N2441, N2474 and N2480 correspond to previously sequenced S. cerevisiae genes coding respectively for the mitochondrial import protein Mas5, the nucleolar protein Nop2, the outer mitochondrial membrane porin Por1, the cytochrome c oxidase polypeptide VA precursor CoxA and the yeast protein tyrosine phosphatase Msg5. Translation products of three other ORFs N2406, N2411 and N2430 exhibit similarity to previously known S. cerevisiae proteins: the ribosomal protein YL9A, the protein Nca3 involved in the mitochondrial expression of subunits 6 and 8 of the ATP synthase and actin; in addition N2505 presents strong similarity to an ORF of chromosome IX. The predicted protein products of ORFs N2417 and N2403 present similarities with domains from proteins of other organisms: the Candida maltosa cycloheximide-resistance protein, the human interleukin enhancer-binding factor (ILF-2). The 12 remaining ORFs show no significant similarity to known proteins. In addition, we have detected a DNA region very similar to the yeast transposon Ty 1–15 of which insertion has disrupted a tRNAAsp gene. The sequence has been deposited in the GenBank database with the Accession Number U12141.  相似文献   

11.
The Saccharomyces cerevisiae gene BTN1, encodes a 408 amino acid putative integral membrane protein, which is 39% identical and 59% similar to the human Cln3p, whose mutant forms are responsible for Batten's disease and for a diminished degradation of mitochondrial ATPase synthase subunit c. Disruption experiments established that Btn1p is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase in yeast. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration‐induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration‐induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration‐induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration‐induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration‐induced yPTP was also inhibited by NAD, Mg2+, NH4+ or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration‐induced yPTP as those previously described for the ATP‐induced yPTP and reconcile previous strain‐dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Exploiting the polymerase chain reaction, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) of the fission yeast Schizosaccharomyces pombe. Inspection of the nucleotide sequence of the gene revealed an open reading frame that can encode a polypeptide of 899 amino acid residues with a calculated molecular mass of 102 kDa. This putative polypeptide contains both the X and Y regions that are conserved among three classes of mammalian PLC, and also contains a presumptive Ca2+-binding site (an E-F hand motif). The structure of the putative protein is most similar to that of the δ class of PLC isozymes. To investigate the role of this gene, designated plc1+, gene disruption was carried out by interrupting the coding region with the ura4+ marker. Growth of plc1 cells was temperature-sensitive in rich medium, and cells could not grow in synthetic medium. Expression of the PLC1 gene of Saccharomyces cerevisiae suppressed the growth defect phenotype of plc1? cells, a strong suggestion that the plc1+ gene encodes PLC. The PLC1 sequence appears in the public data libraries, DDBJ GenBank, EMBL under the following Accession Number: D38309.  相似文献   

14.
The literature reports an optimum NaOH concentration for the alkaline cleaning of whey deposits or gels; at NaOH concentrations higher than this optimum, cleaning proceeds much more slowly. Although this phenomenon is of great importance in the cleaning of dairy equipment, no conclusive physical explanation has yet been presented. In this study, we present strong evidence that the dissolution rate is affected by the equilibrium-swelling ratio in β-lactoglobulin (βLg) gels. The swelling ratio is greatly reduced in the presence of salts due to the polyelectrolyte screening effect of the cations. This has been observed in free-swelling βLg gels using gravimetrical analysis and in the uniaxial swelling of WPC gel deposits using fluid dynamic gauging. At high dissolution pH (>13.3), the high Na+ concentration reduces swelling in spite of the high surface charge of the protein. It is proposed that the reduction of the free volume inside the gel impedes the transport of the protein aggregates out of the NaOH penetration zone. We have also observed that the final dissolution rate of gels pre-soaked in 1 M NaOH or NaCl is similar, despite the difference in pH, and much lower than for untreated gels: the high Na+ concentration in the soaked gels hinders swelling, inhibiting the disentanglement of the protein clusters regardless of the high pH.  相似文献   

15.
Candida krusei is a pathogenic yeast species that is phylogenetically outside both of the well-studied yeast groups, whole genome duplication and CUG. Like all other yeast species, it needs to accumulate high amounts of potassium cations, which are needed for proliferation and many other cell functions. A search in the sequenced genomes of nine C. krusei strains revealed the existence of two highly conserved genes encoding putative potassium uptake systems. Both of them belong to the TRK family, whose members have been found in all the sequenced genomes of species from the Saccharomycetales subclade. Analysis and comparison of the two C. krusei Trk sequences revealed all the typical features of yeast Trk proteins but also an unusual extension of the CkTrk2 hydrophilic N-terminus. The expression of both putative CkTRK genes in Saccharomyces cerevisiae lacking its own potassium importers showed that only CkTrk1 is able to complement the absence of S. cerevisiae's own transporters and provide cells with a sufficient amount of potassium. Interestingly, a portion of the CkTrk1 molecules were localized to the vacuolar membrane. The presence of CkTrk2 had no evident phenotype, due to the fact that this protein was not correctly targeted to the S. cerevisiae plasma membrane. Thus, CkTrk2 is the first studied yeast Trk protein to date that was not properly recognized and targeted to the plasma membrane upon heterologous expression in S. cerevisiae.  相似文献   

16.
The complete nucleotide sequence of a 39 090 bp segment from the left arm of yeast chromosome IV was determined. Twenty-one open reading frames (ORFs) longer than 100 amino acids and a Gly-tRNA gene were discovered. Nine of the 21 ORFs (D0892, D1022, D1037, D1045, D1057, D1204, D1209, D1214, D1219) correspond to the previously sequenced Saccharomyces cerevisiae genes for the NAD-dependent glutamate dehydrogenase (GDH), the secretory component (SHR3), the GABA transport protein (UGA4), the high mobility group-like protein (NHP2), the hydroxymethylbilane synthase (HEM3), the methylated DNA protein-cysteine S-methyltransferase (MGT1), a putative sugar transport protein, the Shm1 protein (SHM1) and the anti-silencing protein (ASF2). The inferred amino acid sequences of 11 ORFs show significant similarity with known proteins from various organisms, whereas the remaining ORF does not share any similarity with known proteins. The nucleotide sequence has been entered in the EMBL data Library under the Accession Number X99000.©1997 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The existence of a K+/H+ transport system in plasma membrane vesicles from Saccharomyces cerevisiae is demonstrated using fluorimetric monitoring of proton fluxes across vesicles (ACMA fluorescence quenching). Plasma membrane vesicles used for this study were obtained by a purification/reconstitution protocol based on differential and discontinuous sucrose gradient centrifugations followed by an octylglucoside dilution/gel filtration procedure. This method produces a high percentage of tightly-sealed inside-out plasma membrane vesicles. In these vesicles, the K+/H+ transport system, which is able to catalyse both K+ influx and efflux, is mainly driven by the K+ transmembrane gradient and can function even if the plasma membrane H+-ATPase is not active. Using the anionic oxonol VI and the cationic DISC2(5) probes, it was shown that a membrane potential is not created during K+ fluxes. Such a dye response argues for the presence of a K+/H+ exchange system in S. cerevisiae plasma membrane and established the non-electrogenic character of the transport. The maximal rate of exchange is obtained at pH 6·8. This reversible transport system presents a high selectivity for K+ among other monovalent cations and a higher affinity for the K+ influx into the vesicles (exit from cells). The possible role of this K+/H+ exchange system in regulation of internal potassium concentration in S. cerevisiae is discussed.  相似文献   

19.
As part of the EU yeast genome program, a fragment of 14 262 bp from the left arm of Saccharomyces cerevisiae chromosome XIV has been sequenced. This fragment corresponds to cosmid 14-14b and is located roughly 130 kb from the centromere. It contains four new open reading frames which encode potential proteins of more than 99 amino acids, as well as the ypt53, tRNALeu and gsr m2 genes. The putative protein N2212 is similar to the ribosomal protein S7 from humans. N2215 contains several predicted transmembrane elements. N2231 contains regions which are rich in acidic, as well as basic, residues which could form α-helical structures. Similar regions are found in a variety of proteins including glutamic acid rich protein, trichohyalin, caldesmon, Tb-29 and several cytoskeleton-interacting proteins. The sequence has been entered in the EMBL data library under Accession Number X85811.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号