首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dyeing and finishing of textile yarns and fabrics are extremely important processes in terms of both quality and environmental concerns. Among the commercial textile dyes, particularly disperse dyestuffs are of environmental interest because of their widespread use, their potential for formation of toxic aromatic amines and their low removal rate during aerobic waste treatment as well as advanced chemical oxidation. Thus, in the present paper ferrous iron coagulation, ozonation and ferrous iron-catalyzed ozonation were employed at varying pH (3-13) and Fe(II)-ion doses (0.09-18mM) for the treatment of a simulated disperse dye-bath (average initial apparent color as absorbance at 566nm=815.4m(-1); COD(0)=3784mgl(-1); TOC(0)=670mgl(-1); BOD(5,0)=58mgl(-1)) that more closely resembled an actual dyehouse effluent than an aqueous disperse dye solution. Coagulation with 5000mgl(-1) FeSO4-7H2O (18mM Fe(2+)) at pH 11 removed up to 97% color and 54% COD, whereas oxidation via ozonation alone (applied ozone dose=2300mgl(-1)) was only effective at pH 3, resulting in 77% color and 11% COD removal. Fe(II)-ion-catalyzed ozonation (3.6mM Fe(2+) at pH 3; Fe(2+):O3 molar ratio 1:14) eliminated 95% color and 48% COD and appeared to be the most attractive option among the investigated chemical treatment methods as for its applicability at the natural acidic pH of the disperse dye-bath effluent and at relatively low Fe(2+)-ion doses as compared to ferrous sulfate coagulation. However, no TOC reduction was observable for ozonation and catalytic ozonation at the investigated reaction conditions (14gl(-1) O3 at pH 3). An average six-fold enhancement in the biodegradability parameter of the synthetic dye wastewater expressed in terms of the BOD(5)/COD ratio could be achieved by the investigated chemical treatment methods.  相似文献   

2.
Characterisation and management of incinerator wastes   总被引:6,自引:0,他引:6  
Management of municipal and hospital wastes by means of incineration processes generates solid residues, such as bottom and fly ashes and air pollution control residues with high content of heavy metals, inorganic salts and other organic compounds. Characterisation of 24 ash samples, collected from four municipal solid waste incinerators (MSWI) and six hospital medical waste incinerators (HMWI) located in the Basque Country Region (Northern Spain), were carried out at the request of Spanish Regulations and European Economic Community guidelines.The ecotoxicity values, EC(50), of the TCLP leachates show a high variability ranging from 12,967 to 1,000,000mgl(-1) in MSWI samples and from 2917 to 333,150mgl(-1) in HMWI samples. Results from chemical characterisation of DIN 38414-S4 leachates show a high concentration of lead, sulphate and chloride in MSWI samples and chromium in HMWI samples.  相似文献   

3.
The effects of different heavy metals (Cd, Pb), surfactants (cetyltrimethylammonium bromide (CTAB), cetylpyridine chloride (CPC)) and the ionic strength (Ca2+, NH4+) on breakthrough curves (BTCs) for sorption and desorption of bisphenol A (BPA) were studied using soil column experiment. Results showed that the presence of heavy metals and cationic surfactants caused a significant increase on the BPA sorption. In addition, the volume required when effluent concentration reached half of the influent concentration (VC1/2) increased due to the introduction of heavy metals and surfactants. It was also found that the larger amount of BPA was absorbed with higher ionic strength. The cationic surfactants enhanced the desorption ability of BPA from the soil. The results provided a better understanding of BPA behavior in environment and facilitated more accurate assessment of its ecological risk and identification of appropriate management strategies.  相似文献   

4.
Stabilization of heavy metals in ceramsite made with sewage sludge   总被引:3,自引:0,他引:3  
In order to investigate stabilization of heavy metals in ceramsite made with sewage sludge as an additive, the configuration of heavy metals in ceramsite was analysed by XRD and while leaching tests were conducted to find out the effect of sintering temperature (850 degrees C, 900 degrees C, 950 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C), pH (1, 3, 5, 7, 9, and 12), and H2O2 concentration (0.5molL(-1), 1molL(-1), 1.5molL(-1), 3molL(-1), and 5molL(-1)) on stabilization of heavy metals (Cd, Cr, Cu, and Pb) in ceramsite. The results indicate that leaching contents of heavy metals do not change above 1000 degrees C and sintering temperature has a significant effect on stabilization of heavy metals in ceramsite; leaching contents of heavy metals decrease as pH increases and increase as H2O2 concentration increases. XRD analysis reveals that the heavy metals exist in steady forms, mainly Pb2O(CrO(4)), CdSiO3, and CuO at 1100 degrees C. It is therefore concluded that heavy metals are properly stabilized in ceramsite and cannot be easily released into the environment again to cause secondary pollution.  相似文献   

5.
Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd(2+) (0, 0.25, 1, 2, 10, 50, and 100mgL(-1)), and were found to be tolerant to Cd(2+) at all levels. No metal-toxicity symptoms were observed at any Cd(2+) level. Root and leaves Cd concentrations were 299+/-13.93 and 233+/-8.77mgkg(-1) (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites.  相似文献   

6.
Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.  相似文献   

7.
This paper provides a quantitative comparison between electrocoagulation and chemical precipitation based on heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) removal from acidic soil leachate (ASL) at the laboratory pilot scale. Chemical precipitation was evaluated using either calcium hydroxide or sodium hydroxide, whereas electrocoagulation was evaluated via an electrolytic cell using mild steel electrodes. Chemical precipitation was as effective as electrocoagulation in removing metals from ASL having low contamination levels (30 mg Pbl(-1) and 18 mg Znl(-1)). For ASL enriched with different metals (each concentration of metals was initially adjusted to 100 mg l(-1)), the residual Cr, Cu, Pb and Zn concentrations at the end of the experiments were below the acceptable level recommended for discharge in sewage urban works (more than 99.8% of metal was removed) using either electrocoagulation or chemical precipitation. Cd was more effectively removed by electrochemical treatment, whereas Ni was easily removed by chemical treatment. The cost for energy, chemicals and disposal of metallic residue of electrocoagulation process ranged from USD 8.83 to 13.95 tds(-1), which was up to five times lower than that recorded using chemical precipitation. Highly effective electrocoagulation was observed as the ASL was specifically enriched with high concentration of Pb (250-2000 mg Pbl(-1)). More than 99.5% of Pb was removed regardless of the initial Pb concentration imposed in ASL and, in all cases, the residual Pb concentrations (0.0-1.44 mg l(-1)) were below the limiting value (2.0 mg l(-1)) for effluent discharge in sewage works.  相似文献   

8.
The crushing of reclaimed concrete-based demolition waste to produce recycled aggregate gives rise to a large volume of cement-rich fine material for which market development would be beneficial. It was envisaged that this fine fraction may prove to be an effective sorbent for aqueous heavy metal species by virtue of its ion exchangeable phases and high pH. A batch sorption study confirmed that crushed concrete, in the particle size range 1-2 mm, successfully excluded Cu2+ (35 mg g(-1)), Zn2+ (33 mg g(-1)) and Pb2+ (37 mg g(-1)) from aqueous media. Subsequent distilled water leaching of the metal-laden concrete particles indicated that 1.9, 0.9 and 0.2% of the bound metals, Cu2+, Zn2+ and Pb2+, respectively, were readily soluble. Scanning electron microscopy revealed that the removal of Cu2+ and Zn2+ arose from surface precipitation reactions, whereas, the principal mechanism of uptake of Pb2+ was found to be by diffusion into the cement matrix. The metal ion removal efficiency of crushed concrete fines is compared with those of other low cost sorbents and potential applications which may exploit this sorptive property are also discussed.  相似文献   

9.
A hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle was used for biological treatment of 2,4,6-tri-chlorophenol (TCP) containing synthetic wastewater. Effects of hydraulic residence time (HRT) on COD, TCP and toxicity removal performance of the reactor were investigated for the HRT values between 5 and 30 h, while the feed COD (2700+/-100 mgl(-1)), TCP (300+/-10 mgl(-1)) and the solids retention time (sludge age, SRT, 20 d) were constant. Percent TCP, COD and toxicity removals increased with increasing HRT resulting in more than 90% COD, TCP and toxicity removals at HRT values above 25 h. Biomass concentrations in the packed column and in the aeration tank increased with increasing HRT resulting in low reactor TCP concentrations and therefore high TCP, COD and toxicity removals at high HRT values. Volumetric and specific rates of TCP and COD removals decreased with increasing HRT due to increased biomass and decreased flow rates at high HRT levels. Volumetric and specific removal rates of COD and TCP were maximum at an HRT of 5 h.  相似文献   

10.
This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1mg) of each metal was added to the 100ml MSW and the batch reactor test was carried out. The results showed that higher HNO3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning Kd (lg(-1)) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest Kd (lg(-1)) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.  相似文献   

11.
Influence of heavy metals was investigated by conducting various tests on the samples collected from Nonthaburi dumpsite in Thailand. The heavy metal concentration in the solid waste and its mobility potential based on its binding forms was studied. The sequential extraction method was used to determine the binding forms of metals. From the analysis, Zn was found to be highest concentrated heavy metal compared to Mn, Cu, Cr, Cd, Pb, Ni and Hg in the solid waste. From the sequential extraction, Mn, Zn and Cd mostly found in reducible form, showed its susceptibility to be leached easily. Cu and Cr were found predominantly in oxidizable form and stable under anaerobic condition. Pb and Ni were present in residual form, which is inert. The estimated individual contamination factor (C(f)(i)), showed Zn with highest affinity to leach. The concentration level of all the heavy metals in the leachate except for Cr was noticed to be below the National effluent standards. Though, indicated to be safe for disposal, its effect in any concentration proved toxic to the plant life from the seed germination toxicity test using synthetic chelate ethylene diamine tetraacetic acid (EDTA).  相似文献   

12.
A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250mgl(-1)) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD(5)/COD), as well as the toxicity (EC(50)), DOC, colour (Abs(543.5)) and H(2)O(2) evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60min of 10mgl(-1) Fe(II) and 125mgl(-1) H(2)O(2) photo-Fenton pre-treatment and 1 day HRT in SBR.  相似文献   

13.
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC(1) and EC(2)), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd(2+), Cu(2+), Ni(2+) and Zn(2+). The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms. The order of maximum metal uptakes for Cd(2+), Cu(2+) and Zn(2+) was EC(1)>EC(2)>PC>DW>GA, but the uptakes of Ni(2+) are almost the same for these sorbents. Moreover, sorption kinetics has been performed and it was observed that the equilibrium was reached in less than 2h, which could be described by pseudo-first-order kinetic model. The metal adsorption was strictly pH dependent. The optimum pH values of four metals were in the range of 4.3-6.5 for all sorbents, and the optimum solid/liquid ratio was 3.0 g L(-1).  相似文献   

14.
Characteristics of slag produced from incinerated hospital waste   总被引:4,自引:0,他引:4  
Ash produced from a hospital waste incinerator was treated using a high temperature melting process at 1200 degrees C. The quality of the produced slag was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), leaching tests and sequential chemical extraction of metals. The slag contained large amounts of SiO(2,) CaO, Al(2)O(3), Sn, Ni, Cu, Ba and B. XRD analysis revealed a moderate crystal structure for the melted slag and identified the main crystals as quartz (SiO(2)), kaolinite (Al(2)Si(2)O(5)(OH)(4)), albite (NaAlSi(3)O(8)) and gibbsite (Al(OH)(3)). The observed crystal structure assists in preventing the leaching of heavy metals from the slag. Furthermore, the leaching results found the produced slag to comply with disposal limits set by the US EPA. Results from sequential chemical extraction analysis showed that metals in the slag exhibited the strongest preference to be bound to the residual fraction (stable fraction), which is known to have very low leaching characteristics. Melting was found to stabilize heavy metals in hospital waste successfully and therefore it can be an acceptable method for disposal.  相似文献   

15.
The unextracted residue obtained after a countercurrent two-step extractive process of silica from pumice lapillus, at 100 degrees C and room pressure, has been found mainly crystallized to the pseudo-cubic form typical of zeolite P. This residue could be active as a low-cost agent for the removal of heavy metals from wastewater. In this paper the removal capacity of six metallic cations (i.e. Cu(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+) and Cr(3+)) was studied in a stirred batch reactor. Results obtained showed that the removal of metal ions (100-500mgg(-1)) from wastewater is achieved in a short time and the concentration lowered under the legal limits. The adsorption mechanism mainly involves an ionic exchange between sodium ions from the solid phase and heavy metals in solution. However, if wastewater was accompanied by free acidity, it first should be neutralized to pH 4-5 to prevent zeolite destruction.  相似文献   

16.
Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.  相似文献   

17.
The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C(0)), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (kappa) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5mA/cm(2)) and various interelectrode distance (1, 2 and 3cm). For solutions with 300mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55mA/cm(2), initial pH was 7.6, conductivity was 2.1mS/cm, duration of treatment was 10min and interelectrode distance was 1cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD(5)) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15min), and the removal rate reaches 95%.  相似文献   

18.
This research contributes to the knowledge of the heavy metal sources in municipal solid waste (MSW). Samples were collected from 8 cities of Zhejiang province, Eastern China. Cu and Zn, the most two conventional heavy metals with extensive distribution in many kinds of MSW components, were investigated. It shows components of kitchen waste (KW), ash (AS), plastic (PL), and paper (PA) have high universality in MSW and accounted for 55.1-95.5% in each MSW sample. Moreover, these four components are also the main heavy metal sources of MSW, which accounted for 76.3% and 82.3% contribution of the Cu and Zn contents, respectively. The Cu and Zn contents in the gross MSW sample were 41.2-1643.7 mg kg(-1) and 109.3-1077.9 mg kg(-1), respectively, which on different degree exceed the set standard for "environmental quality standard for soil" (Cu, 100 mg kg(-1); Zn, 400 mg kg(-1)) of China and have high potential of environmental risk. The heavy metal contents in the gross MSW do not have spatial variation but present high seasonal variation, significantly higher in summer than winter (P<0.01). Much more attention should be paid on the MSW management in summer to avoid heavy metal pollution.  相似文献   

19.
Airborne suspended particulate matter was collected on glass fibre filters in urban atmosphere of Islamabad, Pakistan, using high volume sampler. The particulate samples were analysed for 10 selected metals (Fe, Na, Zn, K, Pb, Mn, Cr, Ni, Co and Cd) by FAAS method. Maximum mean contribution was noted for Fe (1.761microg/m(3)), followed by Na (1.661microg/m(3)), Zn (1.021microg/m(3)), K (0.488microg/m(3)) and Pb (0.128microg/m(3)). The particle size determination on vol.% basis for nine fractions (PM(<1.0), PM(1.0-2.5), PM(2.5-5), PM(5-10), PM(10-15), PM(15-25), PM(25-50), PM(50-100) and PM(>100)) was carried out using Mastersizer. PM(5.0-10) were found to be most abundant in the local atmosphere followed by PM(2.5-5.0) and PM(15-25) while coarse/giant particles (PM(50-100) and PM(>100)) showed lower contribution. The trace metals were found to be mainly associated with smaller particulate fractions up to PM(10-15). Among the climatic parameters temperature has significant relationship with fine particles and airborne metal levels while relative humidity showed negative correlation. The source identification was carried out by principal component analysis and cluster analysis. Five metal sources were identified: industrial, vehicular emissions, metallurgical operations, garbage incineration and soil derived dust. The metal levels were also compared with those reported for other rural and urban parts around the world.  相似文献   

20.
Evaluation of the interaction mechanisms between red muds and heavy metals   总被引:7,自引:0,他引:7  
This paper investigated the heavy metal adsorption of non-treated (RM(nt)) and acid-treated red muds (RM(a)), bauxite ore processing waste, in order to evaluate how efficient they are in reducing metal solubility and bioavaliability in polluted soils. Red mud samples were artificially polluted with solutions containing increasing concentrations of Pb, Cd and Zn. Cancrinite and hematite were the main phases of the red muds, and were also the components which adsorbed most heavy metals. The results showed that the RM(nt) adsorption capacity for the three heavy metals was Zn> or =Pb>Cd. Acid treatment with HCl decreased the red mud's capacity to adsorb the heavy metals by 30%. In order to study the different heavy metal-RM interaction mechanisms, all samples after artificial contamination were treated with solutions with gradually increasing extraction capacity. H(2)O and Ca(NO(3))(2) treatments only extracted very low concentrations of Pb, Cd and Zn, while EDTA treatment extracted the most adsorbed heavy metals from the sorbent particles. In particular the water-soluble and exchangeable metal fractions were higher in the RM(a) than they were in the RM(nt), while the concentrations of Pb, Cd and Zn extracted with EDTA were lower. The results showed that red muds can be used successfully to reduce the solubility and bioavailability of heavy metals in polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号