共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
稀疏表征理论在模式识别中的应用引起广泛的关注。在用稀疏表征方法研究人脸识别问题中,为了使得表征系数矢量具有更为显著的稀疏性,该文提出一种Gabor稀疏表征分类(Gabor Sparse Representation Classification, GSRC)算法,该算法利用Gabor局部特征构造字典,增强算法对外界环境变化的鲁棒性。GSRC算法对所有的Gabor特征等同对待,通过进一步考虑不同Gabor特征对识别的不同贡献,该文提出了一种加权多通道Gabor稀疏表征分类(WMC-GSRC)算法,该算法通过引入Gabor多通道模型,提取不同通道的Gabor特征分别构造字典和稀疏表征分类器,在决策级执行分类器的加权融合得到识别结果。通过在ORL, AR和FERET人脸库上的实验结果验证了该文算法的有效性。 相似文献
4.
Facial feature extraction by a cascade of model-based algorithms 总被引:1,自引:0,他引:1
In this paper, we propose a cascaded facial feature-extraction framework employing a set of model-based algorithms. In this framework, the algorithms are arranged with increasing model flexibility and extraction accuracy, such that the cascaded algorithm can have an optimal performance in both robustness and extraction accuracy. Especially, we propose a set of guidelines to analyze and jointly optimize the performance relation between the constituting algorithms, such that the constructed cascade gives the best overall performance. Afterwards, we present an implementation of the cascaded framework employing three algorithms, namely, sparse-graph search, component-based texture fitting and component-based direct fitting. Special attention is paid on the search and optimization of the model parameters of each algorithm, such that the overall extraction performance is greatly improved with respect to both reliability and accuracy. 相似文献
5.
基于pignistic概率距离的冲突证据合成方法 总被引:6,自引:1,他引:6
Dempster Shafer证据理论在数据融合中有着广泛的应用.但当证据之间高度冲突时,应用DS证据合成公式往往会得出错误的结果.在现有的证据合成改进方法中,均使用冲突系数k来度量证据之间冲突的程度.最新的研究表明:影响证据冲突的因素不仅仅是冲突系数k,还和证据的pignistic概率距离等因素有关.在原有的冲突系数k之上,引入pignistic概率距离,提出了一种新的冲突证据合成方法.仿真结果表明:当证据之间的冲突小时,合成结果近似于D-S证据合成公式,当证据之间的冲突较大时,这种方法在公式模型上比其他方法完善,冲突证据的合成结果更加合理. 相似文献
6.
该文针对人脸图像受到非刚性变化的影响,如旋转、姿态以及表情变化等,提出一种基于稠密尺度不变特征转换(SIFT)特征对齐(Dense SIFT Feature Alignment, DSFA)的稀疏表达人脸识别算法。整个算法包含两个步骤:首先利用DSFA方法对齐训练和测试样本;然后设计一种改进的稀疏表达模型进行人脸识别。为加快DSFA步骤的执行速度,还设计了一种由粗到精的层次化对齐机制。实验结果表明:在ORL,AR和LFW 3个典型数据集上,该文方法都获得了最高的识别精度。该文方法比传统稀疏表达方法在识别精度上平均提高了4.3%,同时提高了大约6倍的识别效率。 相似文献
7.
一种基于快速KNFL的模式分类法及其在寂声/语声段识别中的应用 总被引:1,自引:0,他引:1
本文提出了一种基于快速K最近特征线(K Negest Feature Line,KNFL)的模式分类法,这种方法可看作是对K最近邻法(KNN)的推广,它以最近特征线(Negest Feature Line,NFL)为基础,先找出距离待识别点最近的K条特征线,再找出这K条特征线中属于某一类别数目最多的那一类作为识别结果。而在对NFL的搜索中,提出了一种快速的计算方法,使得KNFL计算量大大减少。此外,本文可以把这种算法应用于语音信号的寂声/语声段的识别中。实验结果表明,将KNFL应用于语声段/寂声段的识别会得到良好的效果。 相似文献
8.
为解决眼镜遮挡会降低人脸识别性能的难点,借鉴深度卷积神经网络在超分辨率方面的成功应用,该文提出一种用于细粒度人脸识别的眼镜自动去除方法ERCNN.用卷积层、池化层、MFM特征选取模块和反卷积层设计ERCNN网络模型,自动学习戴眼镜和未戴眼镜人脸图像对之间的映射关系,实现端到端的眼镜去除.然后,收集大量监控场景下的人脸图像,以及互联网上公开的人脸图像作为训练集;同时构建SLLFW数据集,作为眼镜去除和人脸识别的测试集.最后,通过与传统的眼镜去除方法进行对比试验,该文算法的各项评价指标优于传统方法,能有效的去除真实人脸图像中眼镜;同时在SLLFW人脸数据集上形成的全框眼镜、半框眼镜和无框眼镜人脸数据集上对多种人脸识别算法进行对比试验.试验表明,在FAR为1%的情况下,利用该文方法对F-SLLFW, H-SLLFW和R-SLLFW数据集的人脸图像进行眼镜去除后,SphereFace算法的TAR分别达到90.05%, 91.14%和92.33%,比未去除眼镜的识别率分别提高了3.92%, 3.08%和1.26%;同样,在FAR为0.1%的情况下,比SphereFace算法的TAR分别提高了10.06%, 4.29%和2.13%,说明该文方法有助于提升细粒度人脸识别的识别精度. 相似文献
9.
10.
Eric Tokuda Helio Pedrini Anderson Rocha 《Journal of Visual Communication and Image Representation》2013,24(8):1276-1292
The development of powerful and low-cost hardware devices allied with great advances on content editing and authoring tools have promoted the creation of computer generated images (CG) to a degree of unrivaled realism. Differentiating a photo-realistic computer generated image from a real photograph (PG) can be a difficult task to naked eyes. Digital forensics techniques can play a significant role in this task. As a matter of fact, important research has been made by the scientific community in this regard. Most of the approaches focus on single image features aiming at detecting differences between real and computer generated images. However, with the current technology advances, there is no universal image characterization technique that completely solves this problem. In our work, we (1) present a complete study of several CG versus PG approaches; (2) create a large and heterogeneous dataset to be used as a training and validation database; (3) implement representative methods of the literature; and (4) devise automatic ways for combining the best approaches. We compared the implemented methods using the same validation environment showing their pros and cons with a common benchmark protocol. We collected approximately 4850 photographs and 4850 CGs with large diversity of image content and quality. We implemented a total of 13 methods. Results show that this set of methods can achieve up to 93% of accuracy when used without any form of machine learning fusion. The same methods, when combined through the implemented fusion schemes, can achieve an accuracy rate of 97%, representing a reduction of 57% of the classification error over the best individual result. 相似文献
11.
Han Ke Zhu Xiuchang 《电子科学学刊(英文版)》2006,23(5):786-790
This letter proposes an effective method for recognizing face images by combining two-Dimensional Principal Component Analysis (2DPCA) with IMage Euclidean Distance (IMED) method. The proposed method is comprised of four main stages. The first stage uses the wavelet decomposition to extract low frequency subimages from original face images and omits the other three subimages. The second stage concerns the application of IMED to face images. In the third stage, 2DPCA is employed to extract the face features from the processed results in the second stage. Finally, Support Vector Machine (SVM) is applied to classify the extracted face features. Experimental results on the AR face image database show that the proposed method yields better recognition performance in comparison with the 2DPCA method that is not combined with IMED. 相似文献
12.
该文提出了一种新的基于复数域中的二维特征提取方法进行人脸识别。该方法首先对人脸样本进行镜像变换,根据原始人脸样本和相应的镜像样本分别计算偶对称样本和奇对称样本,通过奇偶加权因子将偶对称样本与奇对称样本组成复数样本,然后在复数域中分别定义复图像类内散布矩阵和复图像类间散布矩阵,并求解一组最优复投影轴,将复人脸样本投影到这组最优复投影轴上来提取人脸特征,最后采用最近邻距离分类器来分类所提取的特征。该方法在NUST603人脸图像库中进行了实验,实验结果表明该方法获得了较好的识别效果。 相似文献
13.
Han Ke Zhu Xiuchang 《电子科学学刊(英文版)》2006,23(6):943-947
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective. 相似文献
14.
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 相似文献
15.
摘 要稀疏编码(SRC)是一种用于人脸识别的方法。该方法把检测图像表示为一组训练样本的稀疏线性组合,表示的准确性通过L2或L1残余项来衡量。此模型假定编码残余项服从高斯分布或拉普拉斯分布,实际上却不能很准确的描述编码错误率。本文提出一种新的稀疏编码方法,建立一种有约束的回归问题模型。最大似然稀疏编码(MSC)寻找此模型的最大似然估计参数,对异常情况具有很强的鲁棒性。在Yale及ORL人脸数据库的实验结果表明了该方法对于人脸模糊、光照及表情变化等的有效性及鲁棒性。 相似文献
16.
大多数传统的合成孔径雷达(SAR)目标识别方法仅仅使用了单一的幅度特征,但是由于斑点噪声的存在,仅仅使用幅度特征会限制识别的性能。为了进一步提高SAR目标识别的性能,该文提出了一个基于深度森林的多级特征融合SAR目标识别方法。首先,在特征提取阶段,提取了多级幅度特征和多级密集尺度不变特征变换(Dense-SIFT)特征。幅度特征反映了目标反射强度,Dense-SIFT特征描述了目标的结构特征。而多级特征可以从局部到全局表征目标。随后,为了更完整、充分地反映SAR目标信息,借鉴深度森林的思想对多级幅度特征和多级Dense-SIFT特征进行联合利用。一方面通过堆叠的方式不断将多级幅度特征和多级Dense-SIFT特征进行融合,另一方面通过逐层的特征变换挖掘深层信息。最后利用得到的深层融合特征对目标进行识别任务。该文在MSTAR数据集上进行对比实验,实验结果表明所提算法在性能方面取得了提升,且其性能对超参数设置具有一定的鲁棒性。 相似文献
17.
基于下颌轮廓线的人脸分类方法 总被引:6,自引:0,他引:6
在人脸正面图像中,下颌轮廓线是一种相对稳定的形状特征,但是如何提取和有效利用这个特征是一个难题。提出一种在识别中有效利用下颌轮廓特征进行人脸分类的方法。根据先验知识将人脸分为圆脸、尖脸和方脸,据此建立下颌形状模板:尖下巴、圆下巴和平下巴。对事先得到的下颌轮廓上的点进行模板匹配,根据匹配结果进行轮廓线分类。该算法采用了基于先验分布和局部判别的方法,先得到可能的轮廓点,然后进行滤波去除伪下颌点,得到真正位于下颌轮廓上的点,再通过模板匹配进行分类。试验表明,该方法分类效果良好,可以有效提高大库人脸识别的速度和识别率。 相似文献
18.
改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA, DILTSA能够同时保持类内与类间局部判别几何结构。此外,提出一种增强型Gabor-like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor-like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale 和PIE人脸数据库上的实验结果证明了所提方法的有效性。 相似文献
19.
Margin在机器学习中具有很重要的意义,基于margin的特征选择方法就是从分类的角度对特征集各特征的权重进行分析。该文对不同的margin进行了分析,提出将sample-margin和hypothesis-margin分别作为特征选择标准对SBS特征选择方法进行改进,然后设计具有最佳超参数的SVM多项式分类器进行人脸识别。实验在FRERT人脸图像库上进行并与Relief特征选择方法进行了比较,对SVM和NN分类器的实验结果也进行了分析。实验结果显示:该文提出的人脸识别特征选择及识别方法是有效、适用的。 相似文献
20.
步态识别易受相机视角、服装和携带物等外界因素影响而性能下降。为此,该文将非刚性点集配准引入步态识别,利用相邻步态帧之间的形变场表征行走过程中人体轮廓发生的位移量,从而提升对人体形态变化的动态感知能力。在此基础上,该文提出一种基于人体轮廓形变场的双流卷积神经网络GaitDef,该网络模型由形变场和步态剪影两路特征提取分支构成。针对形变场数据的稀疏性设计多尺度特征提取模块,以获取形变场的多层次空间结构信息。针对步态剪影提出动态差异捕捉模块和上下文信息增强模块,以捕捉动态区域的变化特性和利用上下文信息增强步态表征能力。双分支网络的输出特征经过特征融合得到最终的步态表示。大量实验结果表明了该文方法的有效性,在CASIA-B和CCPG数据集上,该文方法的平均Rank-1准确率分别能达到93.5%和68.3%。 相似文献