共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on face recognition based on IMED and 2DPCA 总被引:1,自引:0,他引:1
Han Ke Zhu Xiuchang 《电子科学学刊(英文版)》2006,23(5):786-790
This letter proposes an effective method for recognizing face images by combining two-Dimensional Principal Component Analysis (2DPCA) with IMage Euclidean Distance (IMED) method. The proposed method is comprised of four main stages. The first stage uses the wavelet decomposition to extract low frequency subimages from original face images and omits the other three subimages. The second stage concerns the application of IMED to face images. In the third stage, 2DPCA is employed to extract the face features from the processed results in the second stage. Finally, Support Vector Machine (SVM) is applied to classify the extracted face features. Experimental results on the AR face image database show that the proposed method yields better recognition performance in comparison with the 2DPCA method that is not combined with IMED. 相似文献
2.
3.
DWT based HMM for face recognition 总被引:1,自引:0,他引:1
Shen Linlin Ji Zhen Bai Li Xu Chen 《电子科学学刊(英文版)》2007,24(6):835-837
A novel Discrete Wavelet Transform (DWT) based Hidden Markov Module (HMM) for face recognition is presented in this letter. To improve the accuracy of HMM based face recognition algorithm, DWT is used to replace Discrete Cosine Transform (DCT) for observation sequence ex- traction. Extensive experiments are conducted on two public databases and the results show that the proposed method can improve the accuracy significantly, especially when the face database is large and only few training images are available. 相似文献
4.
Research on two-dimensional lda for face recognition 总被引:2,自引:0,他引:2
Han Ke Zhu Xiuchang 《电子科学学刊(英文版)》2006,23(6):943-947
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective. 相似文献
5.
6.
局部线性嵌入是一种有效地非线性维数约减方法,它能保持降维后的数据与原空间有相同的拓扑关系。但是这种方法在降维处理、可视化以及数据分类方面应用不是很广泛,针对上述问题,提出了一种新的、有效的降维以及数据分类方法——基于最大边缘准则图形嵌入方法。该方法首先构建最近邻关系图聚合数据点之间的最近邻样本,同时最大化类间间隔,保证不同类之间数据可分性大,从而更好地实现数据分类。最后,该方法的有效性分别在ORL及Yale两大人脸库上得到了验证。 相似文献
7.
基于层次模型和融合决策的多姿态人脸识别技术 总被引:2,自引:0,他引:2
该文提出了基于层次模型和融合决策的多姿态人脸识别技术,它首先把各人脸按姿态分成几个大类,并且对各大类按人脸个体分成相应子类,然后对各个大类分别进行基于特征脸的人脸识别,最后对各个姿态的人脸识别中间结果进行融合决策得到真正的人脸识别结果,该算法同时也提供了其姿态识别结果,并且大大减小了耗时,该文算法对ORL,UMIST,Stirling数据和一些自拍数据共1200幅人脸图像进行了识别测试实验,其结果令人鼓舞。 相似文献
8.
基于最大隶属度与证据理论的目标识别融合 总被引:1,自引:0,他引:1
为解决各传感器的类型、精度,外界干扰以及不同传感器对不同目标敏感程度的不同对目标识别的决策结果的影响,通过运用智能信息处理和多源信息融合的相关知识建立了基于最大隶属度与证据理论的目标识别融合模型.该模型首先分析了影响目标识别的因素;然后各雷达站依据最大隶属度选取了不同的权重,从而求出了所测目标相对于目标库中参考目标的隶属度,并将得到的本站对目标的决策结果进行归一化处理后送往了融合中心.研究了比较常用的对不确定信息进行处理的D-S证据理论法,并深入分析了其证据合并规则与决策规则.在融合中心运用了D-S证据理论的有关知识进行融合,最终输出了融合后的目标识别的决策结果.实例证明了该目标识别融合模型的可行性. 相似文献
9.
决策融合是提高合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别性能的重要手段,然而,可靠性较弱的决策往往会导致最终决策融合的效果变差。将可靠性分析引入基于决策融合的SAR目标识别方法中,分别计算各个决策的可靠性系数并选取可靠性的决策参与最终的决策融合。为了验证方法的有效性,分别将提出的可靠性分析应用于多特征决策融合以及多分类器决策融合并基于MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集进行了目标识别实验。在基于主成分分析、线性鉴别分析和非负矩阵分解三种特征进行多特征决策融合的条件下,所提方法和直接进行决策融合的方法的识别率分别为97.47%和96.50%。在基于K近邻、支持向量机和稀疏表示分类器的多分类器决策融合中,所提方法和直接进行决策融合的方法的识别率分别为97.10%和96.28%。实验结果充分证明了所提方法的有效性。 相似文献
10.
11.
提出一种新颖的零空间判别投射(NDPE)的子空间人脸识别方法。基于局部保持映射(LPP)和非参数判别分析方法,NDPF能够同时编码人脸数据流形的几何和判别结构,并且通过在零空间中求解特征值来克服小样本尺寸问题。为进一步提高人脸识别的准确率,提出融合双树复小波变换(DTCWT)与NDPE的方法。实验结果表明,所提人脸识别方法在ORL、Yale和AR人脸数据库上均取得了较高的识别率。 相似文献
12.
13.
基于下颌轮廓线的人脸分类方法 总被引:6,自引:0,他引:6
在人脸正面图像中,下颌轮廓线是一种相对稳定的形状特征,但是如何提取和有效利用这个特征是一个难题。提出一种在识别中有效利用下颌轮廓特征进行人脸分类的方法。根据先验知识将人脸分为圆脸、尖脸和方脸,据此建立下颌形状模板:尖下巴、圆下巴和平下巴。对事先得到的下颌轮廓上的点进行模板匹配,根据匹配结果进行轮廓线分类。该算法采用了基于先验分布和局部判别的方法,先得到可能的轮廓点,然后进行滤波去除伪下颌点,得到真正位于下颌轮廓上的点,再通过模板匹配进行分类。试验表明,该方法分类效果良好,可以有效提高大库人脸识别的速度和识别率。 相似文献
14.
D-S证据理论在雷达目标识别中的应用 总被引:1,自引:0,他引:1
为解决雷达终端目标识别问题,采用基于推理的数据融合方法。分析了Dempster-Shafer(D-S)证据理论用于多传感器数据融合的基本概念和理论,并结合最小风险准则将其应用于雷达终端目标识别的数据融合中。实验结果证明了基于融合后的识别结果较单传感器单周期的识别结果好,验证了这一方法的正确性和有效性。 相似文献
15.
Dempster Shafer证据理论在数据融合中有着广泛的应用.但当证据之间高度冲突时,应用DS证据合成公式往往会得出错误的结果.在现有的证据合成改进方法中,均使用冲突系数k来度量证据之间冲突的程度.最新的研究表明:影响证据冲突的因素不仅仅是冲突系数k,还和证据的pignistic概率距离等因素有关.在原有的冲突系数k之上,引入pignistic概率距离,提出了一种新的冲突证据合成方法.仿真结果表明:当证据之间的冲突小时,合成结果近似于D-S证据合成公式,当证据之间的冲突较大时,这种方法在公式模型上比其他方法完善,冲突证据的合成结果更加合理. 相似文献
16.
改进的证据组合规则及其在融合目标识别中的应用 总被引:5,自引:0,他引:5
针对D-S理论在解决证据冲突时的局限性,提出了一种改进的证据组合规则.该方法充分考虑了证据源信息和冲突证据本身的信息,利用证据间的支持度矩阵,得到各证据的可信度.并以此对证据进行加权平均;在此基础上,将支持证据冲突的概率按各个命题在所有命题中所占的比重进行分配.仿真实验结果表明,该方法在处理冲突证据问题及证据比较一致的问题时,都能得到合理的融合结果.在实际的多传感器融合目标识别中,可以充分利用多个传感器的互补信息,最大程度地降低矛盾冲突因子对识别结果的影响,从而提高了融合识别的可靠性和有效性. 相似文献
17.
In recent years, artificial intelligence has been widely used in such fields as agricultural informatization, precision agriculture and precision animal husbandry. Due to limited research on deep learning in real-time agricultural and pastoral situations, deep learning and computer vision have become very important topics in the agricultural field. Recent studies have shown that the fusion of features under different attention mechanisms will help advance the utilization of such features, and will thus influence the accuracy and generalization ability of the models used. In this paper, we propose a lightweight network structure based on feature fusion under a dual attention mechanism with the same activation and joint loss functions. More specifically, we propose an innovative method to improve the network structure of two different attention mechanisms, and achieve feature fusion by combining the two. At the same time, we keep the activation functions consistent with those of the original network structure, and we develop a joint loss function to expand the use of various features. We also take the novel approach of applying the trajectory behavior analysis method to walking and standing. Experiments using both a publicly available data set and a data set obtained from a farm show that our algorithm achieves state-of-the-art performance in terms of accuracy and generalization ability, as compared to other methods. 相似文献
18.
19.
The typical sparse representation for classification (SRC) exploits the training samples to represent the test samples, and classifies the test samples based on the representation results. SRC is essentially an L0-norm minimization problem which can theoretically yield the sparsest representation and lead to the promising classification performance. We know that it is difficult to directly resolve L0-norm minimization problem by applying usual optimization method. To effectively address this problem, we propose the L0-norm based SRC by exploiting a modified genetic algorithm (GA), termed GASRC, in this paper. The basic idea of GASRC is that it modifies the traditional genetic algorithm and then uses the modified GA (MGA) to select a part of the training samples to represent a test sample. Compared with the conventional SRC based on L1-norm optimization, GASRC can achieve better classification performance. Experiments on several popular real-world databases show the good classification effectiveness of our approach. 相似文献
20.
多传感器模糊D-S理论辐射源识别 总被引:1,自引:0,他引:1
研究了将D-S证据理论与模糊推理组合应用辐射源识别的方法,提出了基于模糊综合评估获取基本概率分配函数的方法;在此基础上研究了应用D-S证据理论进行多传感器信息融合,从而识别雷达辐射源的原理;仿真实验和对比实验表明本算法的有效性。 相似文献